SAVCBS 2001 Proceedings

Specification and Verification of Component-Based Systems
Workshop at OOPSLA 2001

Dimitra Giannakopoulou, Gary T. Leavens, and Murali Sitaraman (editors)
TR #01-09a
October 14, 2001, revised November 6, 2001

Keywords: Specification, verification, component-based systems.

2000 CR Categories: D.1.m [Programming Techniques] Miscellaneous — component-based
programming, reflection; D.2.1 [Software Engineering] Requirements/Specifications — languages,
methodology, theory, tools; D.2.4 [Software Engineering] Software/Program Verification — assertion

checkers, class invariants, correctness proofs, formal methods, model checking, programming by contract,
reliability, validation; D.2.5 [Software Engineering] Testing and Debugging — testing tools; D.2.11
[Software Engineering] Software Architecture — languages; D.2.m [Software Engineering] Miscellaneous
— component-based systems, reusable software; D.3.1 [Programming Languages] Formal Definitions and
Theory — semantics; D.3.3 [Programming Languages] Language Constructs and Features — data types
and structures; F.3.1 [Logics and Meaning of Programs] Specifying and verifying and reasoning about
programs — assertions, invariants, logics of programs, pre- and post-conditions, specification techniques;
F.3.m [Logics and Meaning of Programs] Miscellaneous — reasoning about performance.

Each paper’s copyright is held by its author.

Department of Computer Science
226 Atanasoff Hall
Iowa State University
Ames, Iowa 50011-1040, USA

Table of Contents

PLEEACE ettt ettt et e e e e e e e e e e e ———————————————————tttteeteeeeeeateaeaaaans 1il

Session |: Specification-Based Testing and Run-Time Analysis

TEStING COMPONEILSeeeviierireieiiesireerteesteeesteesteeeseeesseessseessseessseessseesssseassesessseessssessseessseesssssssseesseees 4
Neelam Soundarajan, The Ohio State University
Benjamin Tyler, The Ohio State University

Spying on Components: A Runtime Verification Techniquecccoeveveeviienciieiniieieeee e 7
Mike Barnett, Microsoft Research
Wolfram Schulte, Microsoft Research

Toward Reflective Metadata Wrappers for Formally Specified Software Components 14
Stephen H. Edwards, Virginia Tech.

Session II: Architecture and Composition

Architectural Reasoning in ATchJavacocooiiiiiiiiiiiiniiteec et 22
Jonathan Aldrich, University of Washington
Craig Chambers, University of Washington

Using Message Sequence Charts for Component-based Formal Verificationccccceeenvenvcnnnen. 32
Bernd Finkbeiner, Stanford University
Ingolf Kriiger, Technical University of Munich

Session IlI: Keynote

The Outer Limits of the Specification Universe: On to the Fourth Quadrant
Clemens Szyperski, Microsoft Research

Session IV: Compositional Verification

Reasoning about Composition: A Predicate Transformer Approachccccoceevervienenecnicniecrnneenn 42
Michel Charpentier, University of New Hampshire

Specification and Verification with REferencescccvvevvieiriiiiciiiiiiccee et 50
Bruce W. Weide, The Ohio State University
Wayne Heym, The Ohio State University

Modular Verification of Performance COITECINESScevueerueiriienienieeniente ettt eiee e siee st 60
Joan Krone, Denison University
William F. Ogden, The Ohio State University
Murali Sitaraman, Clemson University

Session V: Discussion

Other Accepted Papers

On Contract Monitoring for the Verification of Component-Based Systemscccccceveeeneenee. 68
Philippe Collet, Université de Nice - Sophia Antipolis

A Framework for Formal Component-Based Software Architectingcoccceveeveeneenccnneeennen. 73
M.R.V. Chaudron, Technische Universiteit Eindhoven
E.M. Eskenazi, Technische Universiteit Eindhoven
A.V. Fioukov, Technische Universiteit Eindhoven
D.K. Hammer, Technische Universiteit Eindhoven

Type Handling in a Fully Integrated Programming and Specification Languagec...cc.ccc...... 81
Gregory Kulczycki, Clemson University

A Formal Approach to Software Component Specificationcoccevveereerienriernieenieeneeneeneen 88
Kung-Kiu Lau, University of Manchester
Mario Ornaghi, Universita degli studi di Milano

A Pi-Calculus based Framework for the Composition and Replacement of Components 97
Claus Pahl, Dublin City University

Analysis of Component-Based Systems - An Automated Theorem Proving Approach 107
Murali Rangarajan, Honeywell Technology Center
Perry Alexander, The University of Kansas

A Component Oriented Notation for Behavioral Specification and Validationcc...c....... 115
Isabelle Ryl, Université des Sciences et Technologies de Lille
Mireille Clerbout, Université des Sciences et Technologies de Lille
Arnaud Bailly, Université des Sciences et Technologies de Lille

ACOEL on CORAL: A COmponent Requirement and Abstraction Languageccc.c....... 125
Vugranam C. Sreedhar, IBM TJ Watson Research Center

Non-Functional Requirements in a Component Model for Embedded Systems 132
Roel Wuyts, Universitdt Bern
Stéphanie Ducasse, Universitdt Bern

Preface

The goal of this workshop was to explore how formal (i.e., mathematical) techniques can be or should be
used to establish a suitable foundation for specification and verification of component-based systems.
Component-based systems are a growing concern for the object-oriented community. Specification and
reasoning techniques are urgently needed to permit composition of systems from components, for which
source code is unavailable.

We wanted to bring together researchers and practitioners in the areas of component-based software and
formal methods, to address the specification and verification problems. Several representatives from
Microsoft research attended the workshop, and presented their approach to specification and verification in
the context of Microsoft products. However, it was generally agreed that a lot remains to be done to address
the needs of industry. On the other hand, papers on testing, run-time checking of assertions, and the use of
message sequence charts addressed more practical concerns. Another goal was to focus more of the effort
in formal methods on component-based systems; time will tell if we have contributed to realizing this goal.

The main expected result of the meeting would be an outline of collaborative research topics and a list of
areas for further exploration. Some of these ideas were presented in our OOPSLA poster.

The papers at the workshop and those included in the proceedings were selected from papers submitted by
researchers worldwide. Due to time limitations at the workshop, only a few papers could be presented

The discussion at the workshop itself was quite interesting. All agreed that compositional, modular
reasoning is a necessary goal in this area. We discussed several strategies for making reasoning more
tractable, including proving less, checking parts of a proof at run-time (as in run-time assertion checking),
decomposing proofs by using stronger specifications, and writing components in ways that make proofs
easier (e.g., by limiting the use of pointers). We also discussed ways to add value to specifications, including
providing support for testing and run-time assertion checking. Barnett and Schulte pointed out that in one
case at Microsoft, a specification was “orders of magnitude” smaller than the code it specified. We discussed
ways to extend type systems, to incorporate architectural constraints and message sequence information.
Several of the techniques discussed focused on component interaction at interface boundaries, which is
helpful in reasoning about compositions.

We also identified several areas that seem ripe for future work. One is putting together trace-based
concurrency reasoning with reasoning about data values. Another is how to reason about performance (i.e.,
time and space behavior); one paper at the workshop discussed this, but there is more to be done, and this
kind of reasoning is important for embedded systems. Another area is how to make reasoning easier. One
direction for making reasoning easier is finding limits on programs that have a big impact on ease of
reasoning. There was a lot of discussion of the idea of Weide and Heym to encapsulate references (pointers)
in components, so that all variables in a program are not general references. We also talked about finding
the right abstractions for reasoning about compositions. And we discussed extending type systems to
incorporate more specification information, while still allowing them to be decidable and efficiently
checkable.

The workshop was organized by Dimitra Giannakopoulou (NASA Ames/RIACS), Gary T. Leavens (Iowa
State University), and Murali Sitaraman (Clemson University). The program committee that selected papers
consisted of the organizers and Betty H. C. Cheng (Michigan State University), Steve Edwards (Virginia
Tech), K. Rustan M. Leino (Compaq Systems Research Center), and Markus Lumpe (Iowa State
University). We thank the organizers of OOPSLA 2001 for hosting the workshop.

Testing Components

Neelam Soundarajan and Benjamin Tyler
Computer and Information Science
Ohio State University, Columbus, OH 43210
e-mail: {neelam,tyler}@cis.ohio-state.edu

Abstract

Our goal is to investigate specification-based approaches to
testing OO components. That is, given a class C and its
specification, how do we test C to see if it meets its spec-
ification? Two important requirements that we impose on
the testing approach are that it must not require access to
the source code of the class under test; and that it should
enable us to deal incrementally with derived classes, includ-
ing derived classes that exploit polymorphism to extend the
behavior of the base class. In this paper, we report on our
work towards developing such a testing approach.

1. INTRODUCTION

Our goal is to investigate specification-based approaches
to testing OO components. Suppose we are given an imple-
mentation of a class C' and the specifications of its methods
in the form of pre- and post-conditions (and possibly a class
invariant). How do we test the implementation of C to see if
it meets its specifications? We are not specifically interested
in the question of how to choose a broad enough range of
test cases [12] although that would, of course, have to be an
important part of a complete testing methodology for OO
systems. Rather, we want to develop a general approach
that can be used to test that C meets its specifications.
Once we do this, we should be able to combine it with an
appropriate methodology for choosing test cases.

We impose two important requirements on the testing ap-
proach. First, as far as possible it must not require access
to the source code of the class under test. This is important
if we are to be able to test not just components we de-
signed and implemented but components that we may have
purchased from a software vendor. Second, the testing ap-
proach should enable us to deal incrementally with derived
classes, including derived classes that exploit polymorphism
to extend the behavior of the base class. Much of the power
of the OO approach derives from the ability to develop sys-
tems incrementally, using inheritance to implement derived
classes that extend the behavior of their base classes. To

Permission to make digital or hard copies of all or part of this work for

best exploit this incremental nature of OO, our approach
to reasoning about and testing the behavior of such classes
should also be correspondingly incremental. In this paper,
we report on our work towards developing such a testing
approach.

In the next section, we provide a more detailed statement
of the problem. In Section 3, we outline how the behavior of
derived classes that use polymorphism to enrich base class
behavior may be established in a verification system. In
Section 4 we show how our testing approach can work with
the kind of specifications used in the verification system.
In Section 5, we briefly consider some problems related to
testing classes that have components that may themselves
exploit polymorphism.

2. BACKGROUND AND MOTIVATION

An important tenet of the OO approach is abstraction.
Thus a client of a class should have an abstract view of the
class, rather than thinking in terms of the concrete struc-
ture, i.e., the member variables, of the class. Correspond-
ingly, the specification of a class C usually consists of pre-
and post-conditions of the methods of C, in terms of an
abstract or conceptual model of C. But abstraction causes
an important difficulty [2] for specification-based testing’.
When testing, we have to analyze how the values of the
member variables of the class change as various member op-
erations are invoked, so we have the problem of matching
these values to the abstract specification. Inheritance exac-
erbates the problem since the set of variables and operations
in the derived class is a complex mix of items defined in the
base and derived classes.

Given this, in our approach to testing, we work with con-
crete specifications for the classes. This is not to suggest
that abstract specifications are not important. It is just
that when considering and testing the behavior of the im-
plementation of C, the concrete state of the class has to
play an important role since that is what the implementa-
tion works with. Similarly, when considering the behavior
of the derived class, we (the designer of the derived class as
well as the tester) must keep in mind the concrete state of
both the base and derived classes. When dealing with the

personal or classroom use is granted without fee provided that copies arebehavior of some client code cc that uses C, we should of
not made or distributed for profit or commercial advantage and that copies course not think in terms of the concrete state of C; later
bear this notice and the full citation on the first page. To copy otherwise, to i) the paper, we will see how abstract specifications (of ©)

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

OOPSLA 2001 Workshop on Specification and Verification of Component

Based Systen@ct. 2001 Tampa, FL, USA
Copyright 2001 N. Soundarajan and B. Tyler.

enter the picture when considering testing of cc.

In this paper, by ‘component’, we will generally mean
‘class’ as in a typical OO language.

Gary T Leavens
1

The concrete specification of C' characterizes the behavior
of each method of C in terms of pre- and post-conditions
that are assertions on the member variables of C'. The spec-
ification may also include an invariant, although for simplic-
ity we will usually ignore it in our discussion. Our goal is to
create a testing class TC corresponding to C' that will allow
us to test the class C against this concrete specification. We
note that the word ‘testing’ in the title of the paper may be
considered a verb since we are interested in testing the be-
havior of C'; it may also be considered an adjective since our
approach to testing is to construct the testing component
TC.

In [16], we had suggested the following simple approach to
the construction of T'C: For each method m() of C, include
a corresponding test method test_-m() in 7'C'that will invoke
m(). To do this we need an instance object, call it tc, of type
C'. More precisely tc is a member variable of T'C of type C,
and its value will be (a reference to) an object of type C.
Let us assume that the constructor of T'C has initialized tc
to such a value. We can now write test_m() to simply consist
of a call to m() followed by an assert statement in which we
require that the post-condition post.m is satisfied. Now m()
is required to work, that is ensure that its post-condition is
satisfied when it finishes, only if its pre-condition was satis-
fied at the time of the call to it. Thus a natural definition
of the body of test_m() is:

if (pre.m) { tc.m(); assert(post.m); }

Since the object here is tc, references to a variable x of C'
in pre.m, post.m should be replaced by to tc.x. Are these
references legal? Member variables are typically protected,
and accessible only within C' (and derived classes). In Java
[1], we could put T'C in the same package with C' and give
data members package scope. It is not clear how to address
this in other languages; we had suggested in [16] that it
may be useful to introduce the privileged notion of test class
into the language, with the methods of the test class being
given access to the members of the class?. Another point
is that post.m may contain references to the value of tc.x
at the time of the call. So we need to save this value in,
say, xold, and replace (in post.m) x@pre by xold; in general,
we need to use a cloning operation [11] for this purpose.
Yet another issue has to do with the form of the assertions.
Given that we want the assertions to be machine checkable,
they have to have a somewhat restricted form [5, 8]. One
possibility [11] would be to require that the assertions be
legal boolean expressions allowed by the language. Here we
will just assume that simple assertions, including quantifiers
over finite domains, are allowed.

In this paper, we want to focus on a different issue. Sup-
pose again that D is a derived class of C'. Some methods
may be defined (or redefined) in D while others may be
inherited from C. Most importantly, even some of the in-
herited methods may exhibit behavior that is different from
their behavior in the base class because of calls to meth-
ods that are redefined in D. Following the design patterns

’In C++, we could simply declare TC a friend of C but,
as is widely recognized, the friend mechanism is subject to
serious abuse.

It is also worth noting that if the state of tc is such that
pre.m is not satisfied, the body of test_m() would be entirely
skipped; this may be considered a truly extreme instance of
poor test-case-choice!

literature [6], we will call such methods template methods,
the methods they invoke that may be redefined in D being
called hook methods. Let () be a template method of C,
and h() a hook method that ¢() invokes. As we just noted,
redefining h() in the derived class enriches also the behav-
ior of t(). When reasoning about ¢() in the base class, we
would have appealed to the base class specification of h() to
account for the effects of the calls that ¢() makes to h(). In
order to be sure that the conclusions we have reached about
the behavior of ¢() apply also to its behavior in the derived
class despite the redefinition of h(), we have to require that
the redefined h() satisfies its base class specification; this
requirement is the essence of behavioral subtyping [10, 4].
But ensuring that ¢() continues to behave in a way that is
consistent with it its base class specification is only part of
our concern. The reason that we redefined h() in the derived
class was to thereby enrich (as we will see even in the simple
example later in the paper) the behavior of ¢(). Therefore we
need to be able to reason incrementally about this enriched
behavior and, more to the point of this paper, we need to
be able to test the enriched behavior that ¢() exhibits (or is
expected to exhibit) in the derived class as a result of the
redefinition of h().

First let us consider how the behavior of ¢() may be spec-
ified in the base class so that we can reason incrementally
about it in the derived class. The approach used in [3, 15]
to specify the behavior of ¢() in the base class is to include
suitable information, in its specification, about the sequence
of hook method calls ¢() makes during its execution. This
information is in the form of conditions on the value of the
trace variable T associated with ¢() that records information
about these calls. This information can then be used [15]
to arrive at the richer behavior to ¢() in the derived class®
by combining it with the derived class specification of h().
In this paper we will see how we can test the implementa-
tion of C' and D, in particular the code of () (and h()), to
check whether it satisfies this richer specification about its
behavior.

This is a challenging task because we need to keep track of
the value of 7. Every time ¢() makes a call to h() (or another
hook method), 7 has to be updated to record information
about this call (and return) but, of course, there is nothing in
the code of ¢() to do so. After all, 7 is a variable introduced
by us in order to help reason about the behavior of t(),
not something included by the designer of C. One possible
solution to this problem would be to modify the code of
t() to include suitable (assignment) statements, immediately
before and after each hook method call, that would update
7 appropriately. But this would violate our requirement
that we not assume access to the body of C, and certainly
not modify it. As we will see, it turns out that we can, in
fact, exploit polymorphism in the same way that template
methods do, to address this problem.

3Ruby and Leavens [14] (see also earlier work by Kiczales
and Lamping [7, 9]) present a formalism where some ad-
ditional information about a method beyond its functional
behavior is provided; this may include, for example, infor-
mation about the variables the given method accesses, the
hook methods it invokes, etc. While this is not as complete
as the information we can provide using traces, it has the
important advantage that it is relatively easy to build tools
that can exploit this information, or indeed even mechani-
cally extract this type of information from the code, rather
than having to be specified by the designer.

Gary T Leavens
2

3. INCREMENTAL REASONING

Let us consider a simple example consisting of a bank ac-
count class as the base class (and a derived class we will
define shortly). The definition (in Java-like syntax) of the
Account class appears in Figure 1. The member variable bal

class Account {
protected int bal; // current balance
protected int nautos; // no. of ‘automatic’ transactions
protected int autos[]; // array of automatic transactions

public Account() { bal = 0; nautos =0 ; }
public int getBalance() { return bal; }
public void deposit(int a) { bal += a; }
public void withdraw(int a) { bal —= a; }
public final void addAuto(int a) {
autos[nautos] = a; nautos++; }
public final void doAutos() {
for (int i=0; i < nautos; i++) {
if (autos[i] > 0) { deposit(autos|i]); }
else { withdraw(autos[i]); } } }

Figure 1: Base class Account

maintains the current balance in the account. The meth-
ods deposit(), withdraw(), and getBal() are defined in the
expected manner. Their concrete specifications® are easily
given:
pre.Account.getBalance() true
post.Account.getBalance()
[{nautos, autos, bal}

> I

(result = bal) |

pre.Account.deposit(a) (a>0)
post.Account.deposit(a)

[{nautos, autos, a} A

—~

bal = #bal+a) |

pre.Account.withdraw(a) = (a>0)
post.Account.withdraw(a) =
[{nautos, autos, a} A (bal = #bal—a)] (1)

In the post-conditions we use the notation “!S” to denote
that the value of each of the variables that appears in the set
S is the same as it was at the start of the method in question.
The “#”notation, also in the post-condition, is used to refer
to the value of the variable at the start of the execution of
the method. Thus these specifications simply tell us that de-
posit() and withdraw() update the value of bal appropriately
and leave the other variables unchanged; and getBalance()
returns the balance in the account and leaves all variables
unchanged. The notation result [11] in the post-condition
refers to the value returned by the function in question.
More interesting are the ‘automatic transactions’. The
autos[] array maintains the current set of automatic trans-
actions, nautos being a count of the number of these trans-
actions. doAutos() is the (only) template method of this
class. Whenever it is invoked, it performs each of the trans-
actions in the autos[] array by invoking the hook methods
deposit() and withdraw(). A positive value for an array el-
ement denotes a deposit, a negative value denotes a with-

4This class is so simple that its abstract specification would
essentially be the same as its concrete specification. Note
also that we have included the name of the class in the specs
since we will also consider the behavior of these methods in
the derived class. Thus, (1) specifies the behavior of these
methods when applied to an instance of the Account class.

drawal. Thus doAutos() iterates through the elements of
this array, invoking deposit() if the element in question is
positive and withdraw() if it is negative. addAuto() allows
us to add another transaction to the autos[] array. We will
leave the precise specification of addAuto() to the interested
reader; its pre-condition would require the parameter value
to be not equal to 0, the post-condition would say that au-
tos[] array is updated to include this value at the end of the
array (and nautos is incremented by 1).

Let us now consider the specification of doAutos(). An
obvious specification for this method would be:

pre.Account.doAutos() true
post.Account.doAutos()
[{nautos, autos} A

(bal = #bal+(3(k =0...nautos — 1). autos[k])] (2)

This specifies that doAutos() updates bal appropriately.
What is missing is information about the hook method calls
that it makes during execution. As a result, although (2) is
correct in what it specifies, it proves inadequate in allowing
us to reason about the enriched behavior that this method
will exhibit in the derived class, to which we turn next.

class NIAccount extends Account {
protected int tCount; // transaction count

public NlAccount() { tCount := 0; }
public void deposit(int a) { bal += a; tCount++; }

public void withdraw(int a) { bal —= a; tCount++; }
public int getTC() { return tCount; }

Figure 2: Derived class NIAccount

The enrichment provided by NIAccount (for ‘New and
Improved account’!) is fairly simple: it keeps a count of
the number of transactions (deposits and withdrawals) per-
formed on the account. This is achieved by redefining de-
posit() and withdraw() appropriately’. The newly defined
method, getTC() allows us to find the value of the transac-
tion count. The specifications of these methods are straight-
forward modifications of (1). We will only write down the
specs for getTC() and deposit():

pre.NIAccount.getTC()
post.NIAccount.get TC()
[{nautos, autos, bal, tCount} A (result = tCount) |

(a>0)

true

pre.NIAccount.deposit(a)
post.NIAccount.deposit(a) =
[{nautos, autos, a} A (bal = #bal+a)
A (tCount = #tCount+1) | (3)

Let us now turn to the behavior of doAutos() in the NI-
Account class. It is clear from the body of this template
method, as defined in the base class, that during its execu-
tion, the value of tCount will be incremented by the num-
ber of transactions in the autos[] array, i.e., by the value
of nautos, since doAutos() carries out each of these trans-
actions by invoking deposit() or withdraw(). But we cannot
arrive at this conclusion from its specification (2), not even
given the specification (3) for the behavior of the redefined

SIf these methods were at all complex, it would have been
appropriate to invoke the base class methods in their defini-
tions; here, the only task to be performed by the base class
portion is to update bal, so we have just repeated the code.

Gary T Leavens
3

hook methods that doAutos() invokes. The problem is that
there is nothing in (2) that in fact tells us that doAutos()
invokes deposit() or withdraw(). Indeed, if we rewrote the
body of doAutos() so that it directly added each element of
the autos[] array to bal, instead of invoking deposit() and
withdraw() to perform the transactions, it would still satisfy
the specification (2) but, of course, this rewritten method,
in the NIAccount class (i.e., when applied to a NIAccount
object) would not change the value of tCount.
Consider the following more informative specification:

(r=¢)

= nautos)
0...nautos — 1). autos[k]))

pre.Account.doAutos()
post.Account.doAutos()
[{nautos, autos} A(|T
A (bal = #bal + (Z(k
ANVE:1<k<|7]):
7[k].m € {deposit, withdraw})] (4)
7 denotes the trace of hook method calls that doAutos()
makes during its execution. At its start, doAutos() has
not made any hook method calls, so 7 is €, the empty se-
quence. Each hook method call (and corresponding return)
is recorded by appending a single element to 7. This element
consists of a number of components, including the name of
the method in question, the parameter values passed in the
call, the returned results, etc.; for full details, we refer the
reader to [15]. Here we are interested only in the identity of
the method; 7[k].m gives us the identity of the method in-
voked in the call recorded in the k** element of 7. Thus the
post-condition in (4) states that when doAutos() finishes, it
would have made as many hook method calls as nautos, the
number of automatic transactions in the autos[] array, and
that each of these calls will be to either deposit() or with-
draw(). This specification can, using the enrichment rule of
[15], then be combined with the specification (3) to arrive
at the following:

post.NIAccount.doAutos() =

[{nautos, autos} A(|7| = nautos)

A (bal = #bal 4+ (3(k = 0...nautos — 1). autos[k]))

A (Vk.(1 <k < |7]). T[k].m € {deposit, withdraw})

A (tCount = #tCount + nautos) | (5)
This asserts, as expected, that doAutos() increments the
transaction count appropriately. Informally speaking, what
we have done here is to ‘plug-in’ the additional information
provided by the derived class specs (3) of the hook meth-
ods, into the specification (4) of the template method, to
arrive at the enriched behavior of the template method in
the derived class.

4. TESTING POLYMORPHIC BEHAVIOR

Suppose we wanted to test the class Account to ensure that
it behaves as expected, i.e., according to its specifications.
We could use the approach outlined in Section 2 to define the
corresponding test class, TAccount shown partially in Fig-
ure 3. tAccount is the test account object. rg as an object of
type Random, to be used for generating random values (for
use as parameter values). t_deposit() is the test method cor-
responding to deposit(). We generate a random amount rd
to deposit into tAccount, and if the pre-condition of deposit()
(as specified in (1)) is satisfied, we invoke deposit(rd) on tAc-
count, and then assert that the post-condition of deposit()
must be satisfied, with appropriate substitutions such as re-
placing bal by tAccount.bal being made. Note that we also

class TAccount {
protected Account tAccount; // test object
Random rg;
public void t_deposit() {
int rd = rg.nextlnt(); int oldbal = tAccount.bal; ...
if(rd > 0) { tAccount.deposit(rd);
assert((tAccount.bal = oldbal+rd) A ...); }

Figure 3: Test class TAccount

need the save the starting values of the data members of
tAccount since the post-condition refers to these values. We
have shown only one of these in the figure, oldbal being the
variable in which the starting balance in tAccount is saved.
Of course, when the data member in question is more com-
plex, such as the array autos[], this becomes somewhat more
involved; and if the member is an object (of a type defined
by the user), this will require, as we noted in Section 2, that
the corresponding class provide a cloning operation.

The test methods t_withdraw() and t_getBal() are similarly
written, and we will omit them. Let us consider the tem-
plate method doAutos(). If we were only interested in the
specification (2) which gives us information only about the
functional effect that doAutos() has on the data members of
the Account class, this too would be straightforward®. But
a key aspect of the behavior of doAutos(), indeed the aspect
that qualifies it as a template method and makes it possible
to define derived classes that enrich its behavior by simply
redefining deposit() and/or withdraw(), is of course the calls
it makes to these hook methods. Thus if we are to really test
the implementation of doAutos() against its expected behav-
ior, the testing must be against the trace-based specification
(4).

However, we face an important difficulty in doing this.
The problem is that the trace variable 7 which plays a key
role in this specification is not an actual member variable
of the Account class. We could, of course, introduce such
a variable in the test class TAccount but this won’t serve
our purpose. The problem is that 7 has to record appropri-
ate information about the hook method calls that doAutos()
makes during its execution; this cannot be done in the test
method t_doAutos() before it calls doAutos() or after doAu-
tos() returns. In other words, what we need to do is to ‘track’
doAutos() as it ezecutes; whenever it it gets ready to make a
hook method call, we have to ‘intervene’, record appropriate
information about the call — in particular, the name of the
method called, the parameter values, the state of the object
at the time of the call — and then let the call proceed; once
the hook method finishes execution and returns control to
doAutos(), we again need to intervene and record informa-
tion about the results returned and the (current) state of
the object. One possible way to do this would be to insert
the appropriate statements to update the value of 7 before
and after each hook method call in the body of doAutos();
but this would not only require access to the source code of
doAutos(), it will require us to modify that source code, and

50ne question here would be that of generating a random
value in the tAccount.autos[] array; indeed, in general, the
test object should be in a random (reachable) state, rather
than being initialized to some ‘standard’ state; but this ques-
tion is independent of inheritance and polymorphism, so we
will ignore it here.

Gary T Leavens
4

this is clearly undesirable.

The solution turns out to be provided by polymorphism
itself. The key is to define TAccount not as a class that
includes a member variable of type Account but rather to
have TAccount as a derived class of Account. We call this
new test class T2Account in order to distinguish it from the
original test class TAccount. T2Account appears in Figure 4.
The variable tau of T2Account is the trace variable in which

class T2Account extends Account {

protected trace tau; // trace variable

public void deposit(int aa) {
// add element to tau to record info such as
// name of method called (deposit),
// parameter value (aa) etc., about this call;
super.deposit(aa);
// add info to tau about the result returned
// and current state.

// withdraw() will be similarly defined.

public void t_doAutos() {
tau = ¢;
// check pre-condition, then call doAutos(),
// assert post-condition.

}
}

Figure 4: Test class T2Account

we record information about the sequence of hook method
calls that doAutos() will make during its execution.

The t-doAutos() method starts by initializing tau to ¢,
then calls doAutos() (on the self object). Let us consider
what happens when doAutos() executes, in particular when
it invokes the deposit() method (withdraw() is, of course,
similar, so we won’t discuss it). We have redefined de-
posit() in T2Account, so this call in doAutos() to deposit()
will be dispatched to T2Account.deposit() since the object
that doAutos() is being applied to is of type T2Account.
Now T2Account.deposit() is simply going to delegate the call
to the Account.deposit() but before it does so, it records ap-
propriate information, such as the name of the hook method
called (‘deposit’), the parameter value (aa), etc., about this
call on tau. Next, T2Account.deposit() calls the deposit()
defined in Account; when Account.deposit() finishes, con-
trol comes back to T2Account.deposit(); T2Account.deposit()
now records additional information (about the result re-
turned, current state of the object, etc.), and finishes, so
control returns to Account.doAutos(). The net effect is that
the original code, Account.deposit(), of the hook method in-
voked has been executed but, in addition, information about
this call has been recorded on the trace. And to do this, we
did not have to modify the code of any of the methods of
Account, indeed we did not even need to be able to see that
code.

One point might be worth stressing: T2Account.deposit()
is mot the test method corresponding to deposit(); rather,
it is a redefinition of the hook method Account.deposit() in
order to record information about calls that template meth-
ods might make to this hook method, the information being
recorded on the trace of the template method. If there is
more than one template method, we might consider intro-
ducing more than one trace variable, and yet another vari-
able to keep track of which template method is currently

being tested so that the redefined hook methods can record
the information on the correct trace variable. This is in fact
not necessary since only one template test method will be
executing at a time, and it starts by initializing tau to e.
Of course we have assumed that we can declare tau to be of
type “trace”. If we really wanted to record all the informa-
tion that tau has to contain in order to ensure completeness
of the reasoning system [15], things would be quite com-
plex. We can simplify matters somewhat by only recording
the identities of the hook methods called and the parameter
values and results returned. This is a topic for further work.

This approach can also be used for testing abstract classes,
i.e., classes in which one or more of the hook methods may
be abstract (in Java terminology; pure virtual in C++, de-
ferred in Eiffel). The only change we have to make is that
in T2Account.deposit(), we cannot invoke super.deposit(); in-
stead, we would just record information in tau and return
to doAutos(). Note that the specifications (2) and (4) would
also be quite different. For one thing, we cannot really es-
tablish (2) because, if Account.deposit() (and, presumably,
Account.withdraw() as well) is abstract, there is no way to
tell what effect doAutos() will have on bal, etc. Nevertheless,
the portion of (4) that refers to the hook methods invoked
can still be specified since the basis for this can be seen
from the body of the template method, so the designer of
the Account class could have written this down as part of
the specification of doAutos(). The t-doAutos() method will
then test that doAutos() does indeed satisfy the expectation
about the hook methods it will call”.

Let us now consider the derived class NIAccount. How do
we construct the test class TNIAccount? We cannot define
it as a derived class of T2Account because then the redef-
initions of the hook methods in NIAccount would not be
used by the test methods in TNIAccount. In fact, in gen-
eral, test classes should be final; i.e., a given test class T'C'is
only intended to test that the methods of the corresponding
class C meet their specs. A different class D, even if D is
a derived class of C, would have to have its own test class
defined for it. Of course, TNIAccount would be quite similar
to T2Account. The important differences would be that we
would have test methods corresponding to any new methods
defined in NIAccount, and pre- and post-conditions would be
the ones from the specifications (such as (3) and (5)) of this
class.

Before concluding this section, we should note one other
point. An important assumption we have made is that hook
methods obey behavioral subtyping [10], i.e., any redefini-
tions of hook methods in the derived class must continue
to satisfy their base class specifications. If this were not
the case, the reasoning that we have performed in the base
class about the behavior of the template method, including
the trace-based specification of that method, may no longer
be valid. For example, suppose a template method ¢() first
calls the hook method h1(); if the value returned by hl()
is positive, t() then calls h2(), else it calls h3(). Suppose

"In fact, we would not only want to be assured about the
identity of the hook methods called or the number of times
they are called (which are the pieces of information provided
by (4)) but also the parameter values passed in these calls as
well as the state just before the calls, etc.; this is particularly
important if the hook method in question is abstract. This
additional information can be provided using our traces al-
'Eho}ugh the resulting specs are naturally much more involved
15].

Gary T Leavens
5

also that the base class specification of h1l() asserts that it
will return a positive value. When reasoning about the base
class, we might then establish, on the basis of this specifi-
cation of h1(), a specification for ¢() which asserts that the
identity of the first hook method that ¢() calls (as recorded
in the first element of the trace 7 of ¢()) is hl(), and the
identity of the second method called is h2(). Suppose now
we redefine h1() in the derived class so that it returns a neg-
ative value. Then, in the derived class, () will not satisfy its
specification, and the problem is not with ¢() but with the
way that h1() was redefined. The redefined h1() does not
satisfy its base class specification, i.e., it violates behavioral
subtyping. Hence, when testing the behavior of the hook
methods in the derived class, it may be useful not just to
test against the derived class specification of the method,
but also against its base class specification to ensure that
the redefined hook method still satisfies that specification.

5. DISCUSSION

Let us briefly consider a class C' that has a member vari-
able acc of type Account. In reasoning about the behavior of
the methods of C', we will of course depend upon the spec-
ifications of the Account class. Do we have to worry about
the specifications of the NIAccount class? Yes, indeed. The
point is that for a particular object that is an instance of
C, the acc component may well be of type NlAccount®. In
fact, one reason for defining classes such as NIAccount is
precisely that client classes such as C' can take advantage of
the enrichment provided by this class. What are the issues
that we have to consider in reasoning about and testing the
behavior of C'?

One possibility would be that in reasoning about C, we
only take account of the specification of Account. And in
testing C', we only create instances of C that have an acc
component of type Account. But this is clearly insufficient.
We need to test the behavior of C for instances that have an
acc component of type NIAccount. In fact, whenever a new
derived class of a base class such as Account is defined, the
behavior of any client code of Account has to be re-tested
[13]. While this may seem undesirable, it is to be expected.
After all, by defining a new derived class of Account, we are
enriching the behaviors that a client class, such as C, of Ac-
count can exhibit; so naturally we have to test for such richer
behaviors. The techniques for reasoning about such richer
behaviors of C, as well as the corresponding techniques for
testing them, are topics for further work.

80f course, in languages like C++ for this to happen, acc
would have to be a pointer to Account but this is a language
detail which we can ignore.

6. REFERENCES

[1] K. Arnold, J. Gosling, and D. Holmes. Java
Programming Language, Third Edition, 2000.

[2] E. Berard. Essays on object oriented software
engineering. Prentice-Hall, 1993.

[3] M. Buchi and W. Weck. The greybox approach: when
blackbox specifications hide too much. Turku Centre
for Computer Science TR No. 297, 1999,
http://www.tucs.abo.fi/.

[4] K.K. Dhara and G.T. Leavens. Forcing behavioral
subtyping through specification inheritance. In
Proc. of 18th Int. Conf. on Softw. Eng., pages
258-267. IEEE Computer Soc., 1996.

[5] S. Edwards, G. Shakir, M. Sitaraman, B. Weide, and
J. Hollingsworth. A framework for detecting interface
violations. In Proc. of 5th Int. Conf. on Softw. Reuse.
IEEE, 1998.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: Elements of reusable OO software.
Addison-Wesley, 1995.

[7] G. Kiczales and J. Lamping. Issues in the design and
specification of class libraries. In OOPSLA ’92, pages
435-451, 1992.

[8] P. Krishnamurthy and P. Sivilotti. The specification
and testing of quantified progress properties in
distributed systems. In 23rd Int. Conf. of Software
Eng. ACM, 2001.

[9] J. Lamping. Typing the specialization interface. In
OOPSLA, pages 201214, 1993.

[10] B. Liskov and J. Wing. A behavioral notion of
subtyping. ACM Trans. on Prog. Lang. and Systems,
16:1811-1841, 1994.

[11] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, 1997.

[12] G. Myers. The art of software testing. John Wiley,
1979.

[13] D. Perry and G. Kaiser. Adequate testing and OO
programming. Journal of Object Oriented
Programming, 2:13-19, 1990.

[14] C. Ruby and G. Leavens. Safely creating correct
subclasses without seeing superclass code. In
OOPSLA 2000, pages 208-228. ACM, 2000.

[15] N. Soundarajan and S. Fridella. Framework-based
applications: Incremental development to incremental
reasoning. Proc. of 6th Int. Conf. on Softw. Reuse, pp.
100-116, Springer, 2000.

[16] N. Soundarajan and B. Tyler. Specification-based
incremental testing of object-oriented systems. In
TOOLS 39, pp. 3544, IEEE CS Press, 2001.

Gary T Leavens
6

Spying on Components: A Runtime Verification Technique

Mike Barnett and Wolfram Schulte
Microsoft Research
One Microsoft Way
Redmond WA, 98052-6399, USA
{mbarnett,schulte}@microsoft.com

ABSTRACT

A natural way to specify component-based systems is by an
interface specification. Such a specification allows clients of
a component to know not only its syntactic properties, as is
current practice, but also its semantic properties. Any com-
ponent implementation must be a behavioral refinement of
its interface specification. We propose the use of executable
specifications and a runtime monitor to check for behavioral
equivalence between a component and its specification. Fur-
thermore, we take advantage of the COM infrastructure to
perform this kind of runtime verification without any in-
strumentation of the implementation, i.e., without any re-
compilation or re-linking.

1. INTRODUCTION

We believe that component-based programming needs for-
mal specifications at the interface level. Currently there are
standardized ways to formally specify the syntactic proper-
ties of a component, for example, by type libraries or IDL
files for COM components [7]. However, the proper mech-
anism for specifying semantic properties is still an open re-
search topic. Clearly, clients of a component, whether they
are human or other software components, require some way
of understanding the behavior of a component. Natural lan-
guage descriptions, while valuable, are often incomplete or
ambiguous and are in any case limited to human consump-
tion.

Even if there was agreement on a particular specification
technique, there is still the problem of ensuring that a par-
ticular component does indeed implement its specification.
We propose an answer to the first problem and a technique
that partially addresses the second problem.

Our approach for specifying components is to use AsML to
write an executable specification at the highest level of ab-
straction that defines the behavior of a component as seen
through its interface by a client. AsMmL is an industrial-
strength specification language we have developed at Mi-
crosoft Research. Based on the theory of Abstract State

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

OOPSLA 2001 Workshop on Specification and Verification of Component-

Based Systen@ct. 2001 Tampa, FL, USA
Copyright 2001 M. Barnett and W. Schulte.

Machines (ASMs) [16], it allows the writing of operational
specifications at any given level of abstraction. Using it, we
have built models of real-world components, like intelligent
devices, internet protocols, debuggers and network compo-
nents [2, 14]. Because ASMs have a formal semantics, an
AsML specification is itself a formal specification.

For the second problem, we use ASML’s native COM con-
nectivity and the COM infrastructure to dynamically mon-
itor the execution of a component. By checking for behav-
ioral equivalence between the component and its concur-
rently executing specification we ensure that, during a par-
ticular run, the component is a behavioral refinement of its
specification, i.e., a behavioral subtype [22].

There are two major issues that we do not address in this
paper: non-deterministic specifications and callbacks. Both
are crucial elements of component-based specification and
we have developed solutions for both of them, but they are
beyond the scope of this paper. Although our system is
implemented for COM components, it applies to any com-
ponent technology that uses dynamic linking.

The paper is organized as follows. Section 2 gives an
overview of ASML. Section 3 explains how to use AsML to
write an interface specification. Then in Section 4 we ex-
plain our technique for runtime verification. In Section 5 we
describe some initial experiments we have conducted within
Microsoft. An overview of similar approaches is discussed in
Section 6; Section 7 summarizes, presents limitations, and
describes future work.

2. AsulL

We write executable specifications of components in the
Abstract State Machine Language (AsML). The language is
based on the theory of Abstract State Machines [16]. It is
currently used within Microsoft for modeling, rapid proto-
typing, analyzing and checking of APIs, devices, and proto-
cols.

The key aspects which distinguish AsML from other re-
lated specification languages are:

e it is executable,

e it uses the ASM approach for dealing with state,

e it has a full-fledged object and component system,
e it supports writing non-deterministic specifications.

Our web site [13] contains a complete description as well
as an implementation that is freely available for non-
commercial purposes.

Gary T Leavens
7

Gary T Leavens

Because ASML has native COM connectivity (the next
release will also be integrated into the .NET framework), one
can not only specify components in ASML and simulate them
but also substitute low-level implementations by high-level
specifications. This substition allows heterogeneous systems
to be built, partly developed using standard programming
languages and partly using executable specifications. It is
also crucial for implementing runtime verification without
the need for instrumenting the implementation.

Although not shown in this paper, non-determinism is one
of the key features of AsML. It allows designers to clearly
mark those areas where an implementation must make a
decision. In ASML, non-determinsm is restricted; you can
choose or quantify only over bounded sets [5].

AsML specifications are model programs: they are oper-
ational specifications of the behavior expected of any im-
plementation. Thus, they provide a minimal model by con-
straining implementations as little as possible. There are
three main properties of ASML that support this.

1. The ASM notion of step allows the specifier to choose
an arbitrary granularity of sequentiality. Within a sin-
gle step, all updates (assignment statements) are eval-
uated in parallel; locations (variables) are written in
one atomic transaction at the end of the step. Using
the maximal step size means that no unnecessary se-
quencing is forced on the implementer. An implemen-
tation is free to choose an evaluation order consistent
with efficiency considerations.

2. Non-deterministic (bounded) choice is a basic con-
struct in the language. Although non-determinism is
undesirable in an implementation, non-deterministic
specifications allow implementations to make the cor-
rect engineering decisions. For instance, a specification
might say that any element satisfying certain condi-
tions can be returned from a collection where the im-
plementation might make a particular choice based on
the efficiency of searching the data structures that are
employed.

3. High-level data structures and programming con-
structs allow a specification to be expressed in ways
that might not be acceptable when efficiency is the
primary concern. For instance, a specification might
not bother to normalize a data structure, but instead
re-organize and manipulate it each time it is accessed.

In general, the primary goal of a specification is to be as clear
and understandable as possible; the goal of an implementa-
tion is to meet engineering considerations such as execution
time, storage efficiency, etc.

Compared to an implementation language such as C++,
we have found AsMmL specifications to be an order of mag-
nitude more compact. While part of this is due to the ad-
vantages offered by any higher-level notation, some part is
caused by the specific features of ASML enumerated above.

3. INTERFACE SPECIFICATIONS

Figure 1 presents a small example that we use through-
out. It is not COM-specific. Although written in ASML, it
corresponds exactly to an interface expressed in IDL. AsmL
makes implicit the fact that COM methods also return a sta-
tus value in addition to whatever other values they return;
compiler-generated code handles that automatically.

interface ICanvas
createFigure(...) as IFigure

interface IFigure
getColor() as Color
setColor(c as Color)
getBorder() as IBorder

interface IBorder
getWidth() as Integer
setWidth(i as Integer)

Figure 1: Example Interfaces: Syntax Only

interface ICanvas
createFigure(c as Color, ..
new IFigure(c,...)

.) as IFigure =

interface IFigure

var color as Color

border as IBorder = new IBorder(3)
getColor() as Color = color
setColor(c as Color) = color = c¢
getBorder() as IBorder = border

interface /Border
var w as Integer
getWidth() as Integer = w
setWidth(i as Integer) =
if i < 0 then throw Ezception(...) else w := 1

Figure 2: Example Interfaces: Semantics

The example provides interfaces for a component-oriented
drawing program: a client interacts with a root interface,
ICanvas, to create and manipulate geometric figures, which
support the interface IFigure. Each figure has a nested ob-
ject, a border, which supports the interface IBorder. That is,
a component supporting the IFigure interface also must be
able to provide a reference to an IBorder interface. Whether
this reference is actually to a separate component, or just
a different interface on the same component is exactly the
kind of underspecification that component-based program-
ming encourages.

The method createFigure returns a reference to the IFig-
ure interface on the figure that is created. A figure’s border
is created with some default attributes; the attributes can
be changed later through calls to methods such as set Width.
Note the syntax of the interface definitions alone allows data
values and interface references to be distinguished.

An example ASML specification for this interface is shown
in Figure 2. It is written as a model program, as opposed
to a set of pre- and post-conditions (although AsMmL does
provide also that style of specification). It is a particularly
trivial model; this is good — such a trivial component should
not have a complicated specification.

Note that the method set Width throws an exception if the
argument is less than zero. The exception must belong to

Gary T Leavens
8

calls

Client Server

Figure 3: A client-server architecture

calls

Client Proxy Server
C P S

l

Model
M

Figure 4: Proxy Architecture

some interface, but we do not show it.

4. RUNTIME VERIFICATION

A component that interacts with an implementation of
ICanvas is a client, while the implementation is a server;
together their architecture is shown in Figure 3. We re-
fer to the client program as C' and the implementation of
the server as S. The important feature implied by such
an architecture is that the client is completely unaware of
the identity of the server component. C' is aware solely of
the functionality provided through whatever interfaces are
supported by S. This is the crucial feature we rely on for
implementing our runtime verification.

To enable the ASML specification to spy on the interac-
tions between C and S, we insert a component, P, which
operates as a proxy, as shown in Figure 4. Using a proxy
allows the interaction of the client C' and the server S to be
observed without having to instrument (i.e., modify) either
component. The proxy forks all of the calls made from C
to S so that they are delivered to the AsML specification or
model, M. From now on, we use the letters C', S, M, and P
to refer to the client, server, model, and proxy, respectively.

Inserting a proxy is easily accomplished for COM compo-
nents [7]. Clients can initiate access to a COM component
only by making a request to the operating system. That re-
quest can be intercepted either with or without the client’s
cooperation. As long as the value returned to the client is a
valid interface reference, the client is unable to distinguish
whether the reference is to the actual implementation, S, or
to our proxy, P. In fact, it is this property of COM that
allows transparent access to COM components that are not
local to the machine on which the client is executing.

Runtime verification means that from the client’s point of
view, the observed behavior of the model is indistinguishable
from that of the server, i.e., they are behaviorally equivalent.
Because this is a dynamic check, it means they are equiva-
lent only on the observed behavior; ideally the specification
allows more behaviors. An implementation restricts its be-
havior, usually for reasons of efficiency.

When runtime verification uncovers a difference in behav-
ior between the specification and the implementation, there
is no a priori way to know which is “wrong” (unless one
assumes that the specification is always correct...). We are
unaware of any method for creating perfect specifications;
one can only hope to use a specification language that sup-
ports a layered approach. Engineering practice has shown
the importance of separating unrelated concerns in order to
focus on the proper details at issue. We have tried to ensure
AsML is such a language.

4.1 The Proxypr

All method calls between C' and S are intercepted by P.
As far as C is concerned, it is accessing the functionality
provided by S and is unaware of either P or M. P manages
the concurrent execution of M and S; it forks every call so
that they are delivered to M as well as S. P compares the
results from both components, checking at each interface
call that they agree in terms of their success/failure codes
as well as any return values. (In our examples, we do not
explicitly show the checks for the success or failure of the
methods.) As long as they are the same, the results are
delivered to C. Otherwise S and M are not behaviorally
equivalent; the discrepancy is made evident to an observer
of the system.

We create P automatically from the definition of the inter-
faces that are used between C' and S. The correct operation
of P relies on two properties of object references in S that
allow them to be used as identifiers.

1. They must be stable: an object reference returned to
C maintains its identity in S. The client C' can always
use that reference to refer to the same object.

2. They can be tested for equality: a reflexive, symmetric
operation allows P to distinguish different objects.

We believe both of these properties to be reasonable and
easily met; we mention them only to be explicit about our
dependencies.

4.2 \Verifying Data

For methods that return atomic data values, runtime ver-
ification is comparatively simple. P maintains a global table
map, which stores object references created in P to pairs of
corresponding model and server object references:

map as Map of Object to (Object * Object)

The datatype Map in AsML is an associative array, i.e.,
an array whose indices do not have to be integers. Initially
this table contains just one entry: the reference of the root
object of P along with the tuple containing the references
to the roots of M and S. This entry is created when C
first connects to P. As object references are returned to the
client, the map is kept current, as explained in Section 4.3.

Thus when the client uses an interface reference of type
IFigure to call getColor, it is really calling the method on
an instance of a class, PFigure, defined in P. The behavior
of PFigure.getColor is shown in Figure 5. The table map
is consulted to retrieve the interface references to M and
S. Each is an interface reference to an object implementing
the interface I[Figure in M and S, respectively. The method
getColor is called in each of the components and their return

Gary T Leavens
9

class PFigure implements I[Figure
getColor() as Color =

let (M,S) = map(me)

let m = M.getColor()

let s = S.getColor()

if s #% m then

throw Ezception(...)

else

return s

Figure 5: PFigure.getColor

values are then compared to guarantee that M and S remain
equivalent, from the perspective of the client.

Consider the similar method setWidth that would be de-
fined on an instance of a class PBorder. If the client called
it with a negative argument, then M would throw an excep-
tion. In such a case, S.set Width should also throw a subtype
of the same exception type.

4.3 Verifying Objects

The simple scheme outlined in Section 4.2 breaks down
when a method returns an interface reference. For instance,
in our example, the methods createFigure and getBorder
both return interface references. Consider the situation
when a client calls createFigure (which is probably the first
method the client will call). Our proxy, P, calls the method
on both the implementation and the model. Both M and S
will return to P a created object internal to the respective
components; the objects must support the IFigure interface.

One problem is that there is no way for P to make an
equality test between the references returned from M and
S. That is, it cannot decide at this time whether or not
the two figures are the same. That can be decided only as
operations returning simple data (such as getColor) on those
figures are invoked.

Another problem is that P needs to return a reference
(to an object supporting the IFigure interface) to the client.
If the interface reference from S is returned directly to C,
then P will no longer be able to monitor the communication
between C and S. C may use that interface reference to
make further method calls and those calls would go directly
to S.

To solve both problems, P creates a a new local object,
p, from the class PFigure. P installs the pair of objects
returned from M and S in the global table map, indexed by
p. Instead of returning either the reference from M or S,
it returns a reference to the local object p. Then, when the
client calls getColor on p, it is executing the method shown
in Figure 5.

In this way, all interface references from S are spoofed.
(This is the standard way marshalling proxies are created
for remote interfaces in COM [7].) Returning the interface
reference to the local object means that all future calls can
be monitored.

Now, consider the case when an interface reference is not
new; say it is a reference that has been returned from S in
some previous call. For instance, if getBorder is called more
than once on the same figure, the same reference will be re-
turned. So if S returns an interface reference, s;, then M

10

class PCanvas implements ICanvas
createFigure(...) as IFigure =
let (M, S) = map(me)
let m = M.createFigure(...)
let s = S.createFigure(...)
if (m = nothing) and (s = nothing) then
return nothing
else
let p = checkObjects(m, s)
if p = nothing then
let p’ = new PFigure()
map(p) = (m, s)
return p’
else
return p

Figure 6: PCanvas.createFigure

checkObjects(m as Object, s as Object) as Object =
if (m = nothing) or (s = nothing) then
throw Ezception(...)
elseif 3 p € domain(map)
where map(p) = (m,s) then
return p
elseif 3 p € domain(map)

where first(map(p)) = m
or second(map(p)) = s then
throw Ezxception(...)

else
return nothing

Figure 7: checkObjects

must also have returned an interface reference, m;. Again,
there is no way to know if the two interface references re-
fer to two “equal” components: equality cannot be decided
between them.

However, the references must have been seen together as a
pair the previous time; this is where we assume the stability
of the interface references. If the two returned references
form such a pair, then there is a local object, p, such that
map(p) is the pair (m1, s1). Then p is the spoof for the pair
and should be returned to C'. Otherwise, there is some other
pair in the map (ms, s1), indexed by another local object p’.
(Remember the assumption is that s; has been seen before,
i.e., returned from S at some earlier method invocation.)
This is enough evidence to know that M and S are not
behaviorally equivalent because they are not responding in
the same way to the same method call. The symmetric
argument handles the case when m; has been seen by P
before.

All of these possibilities are illustrated in P’s method for
createFigure as shown in Figure 6. The logic that decides
the correspondence (or lack thereof) between the returned
interface references is enapsulated in the method checkOb-
jects, which is defined in Figure 7. This explains how the
entry in the table retrieved in Figure 5 was initially created.

Gary T Leavens
10

5. EXPERIENCES

Within Microsoft, we have used AsML for runtime verifi-
cation in two case studies on existing product components.
Since they already existed, we reverse-engineered an AsmML
model from the available documentation, discussions with
the responsible product group, and (self-imposed) limited
access to the source code. We did not want to re-implement
the current components, but wanted to have a true n-version
system. Both components are of medium-size: between 50
and 100 thousand lines of code (LOC).

The first case study was partially described in [2]. We
created a model of the Debug Services component for the
NET Runtime. The Debug Services control the execution
of a .NET component in the runtime; a debugger is a client
that requests the installation and removal of breakpoints,
etc. (In turn, a person executing a debugger is a client
of the debugger.) Our model was less than 4K LOC. The
published case study is more concerned with describing the
methodology for creating the specification. In the course of
performing runtime verification, we encountered a violation
of the Debug Services protocol. In conversations with the
product team, it turned out that there was an unresolved
ambiguity in the meaning of one method when used to re-
spond to a callback. While it could not be considered a
major bug in any sense, it did make them realize that they
had never decided how to resolve the ambiguity even though
they had held meetings about it. Had they been using run-
time verification, the problem would not have been able to
lie hidden for so long.

For our second case study we modeled the Network Con-
figuration Engine that is part of the Windows operating sys-
tem. The engine is responsible for maintaining a database
of installed network drivers and the network paths that ex-
ist between them. We wrote the specification only from the
documentation; it ended up being about 2K LOC. We per-
formed runtime verification using an automated test suite
provided by the product group and again found a discrepency
between the model and the implementation. For one partic-
ular method, a flag is used to choose between two different
behaviors. However in the real implementation there had
originally been three different behaviors and the one that
was removed was different from the one that was removed
from the documentation. This demonstrated the usefulness
of having a specification as documentation: had it been used
during the development process, the documentation would
have been guaranteed to be consistent with the implemen-
tation.

6. RELATED WORK

The need to specify and check components is widely rec-
ognized (cf. [26]). However there is neither a standard way
to specify components nor any standard for checking an im-
plementation’s conformance with its specification.

In a recent book, Leavens and Sitaraman [19] summarize
the current approaches for specifying components formally.
In that book, Leavens and Dhara [20] use the specification
language JML to specify Java components. As we do, JML
uses model programs in addition to pre- and post-conditions.
Our approaches are very similar, but JML is restricted to
specifying Java, while ASML can be used with any program-
ming language. Miiller and Poetzsch-Heffter’'s [25] article
in the same volume also concerns the specification of inter-

11

faces, but with pre- and post-conditions. Their main con-
cern is the verification of frame properties, i.e., controlling
the modifications a method can make.

In Edwards et al. [9], an architecture is proposed for de-
riving wrappers for any class implementing an interface that
is enriched with pre- and post-conditions. Human interven-
tion is required to map the concrete state of the class to the
abstract state used in the interface specification. The advan-
tage of our approach is that the operations on the abstract
state are independent of the concrete state, so an AsMmL
specification can check any implementation. However, the
use of an abstraction function means that discrepencies can
potentially be discovered earlier than by checking behavioral
equivalence as we do.

Jonkers, working at Phillips, is also working on interface
specifications [18]. In their work on Ispec, they use tran-
sition systems to provide the semantics for interface speci-
fications. However they don’t try to execute the model in
isolation or run it in parallel with the implementation. In-
stead they want to generate black-box tests.

Besides JML, there has been a lot of work on using as-
sertions to specify Java interfaces, e.g., Contract Java [11,
12], iContract [8], and Jass [4]. And of course, Eiffel [23,
24], uses pre- and post-conditions to specify components.
However, these do not introduce model programs as we do.

Closer to our work on runtime verification is the work on
program checking as proposed by Blum and Wasserman [6].
They argue that it is often much easier to write a program
that checks whether a result is correct, than to prove the
algorithm correct that produces the result. For example,
it is difficult to factor an integer, but, given z and y, it is
trivial to determine whether or not y is a factor of z. In our
case the checker is the specification.

Using this idea, Antoy and Hamlet [1] propose the use of
algebraic specifications to specify software. Algebraic spec-
ifications use high level data structures, thus solving one of
the aforementioned problems of pre-/post-conditions. The
price is that when checking the implementation against the
specification one needs abstraction. Their system is able
to run the executable specification (in fact it is a rewrite
system) in parallel with the implementation in C; similar to
our framework, they check the results on the method bound-
aries. They include a comprehensive review of similar work;
we do not repeat it here. But due to the restricted nature of
algebraic specifications, they cannot deal with state or with
object identities (without a lot of coding).

Another similar project is the SLAM project by Herranz-
Nieva and Moreno-Navarro [17]. They developed a new
specification language and define class operations with pre-
/post-conditions. The resulting specifications are translated
to C++; part of the pre-/post-conditions are compiled to
Prolog. Using a bridge between C++ and Prolog, the Pro-
log clauses are used as assertions during runtime. Results
are speculative, since the project is in the early stages of
development.

While not specifically relating to interface specification,
Erlingsson and Schneider [10] have also developed a method
for injecting a runtime monitor into programs to enforce
security properties. In their examples, the monitors are de-
rived from finite automata and so are consequently limited.
The transitions of the automata must be triggered by events
that are observable at the level of machine code. This is ap-
propriate for the security properties they check, but are not

Gary T Leavens
11

suited for checking interface properties.

Instead of performing checks at runtime, there has been
much work using static analysis to prove general properties
about a program. While it provides a more general result
that is true of any execution of the program, the limitations
of program analysis enforce a consequent weakening of the
set of properties that can be checked. Perhaps the most well
known static program checker is ESC/Java [21].

7. CONCLUSIONS

We have presented a specification method for interfaces
that allows a component implementing the interface to be
run concurrently with its specification with no need for re-
compiling, re-linking, or any sort of invasive instrumentation
at all. While runtime verification does not prove that the
component is correct (with respect to its specification), it
does guarantee that, for that particular trace, the compo-
nent is a behavioral subtype of its specification. For systems
that are not amenable to current formal verification technol-
ogy, this may be the highest degree of formal proof possible.
To be useful in real-world applications, formal specifications
must provide benefit within the existing development pro-
cesses. Runtime verification can be used as part of current
testing techniques, whether directed or ad-hoc.

We have used our methods to model two medium-sized
components within Microsoft and performed runtime veri-
fication during user scenarios as well as in the context of
testing using an automated test suite. Both times we have
been able to find discrepencies between the actual compo-
nent and its specification.

While this presentation has been restricted to determinis-
tic specifications and systems that do not make callbacks,
these burdensome qualifications are addressed in a more
complicated scheme [3]. Unfortunately, this scheme is sub-
ject to exponential worst-case behavior. We are developing
a new system that will be integrated into the .NET runtime,
which does not suffer from this drawback.

Our specification language, AsML, allows other opportu-
nities which are beyond the scope of this paper. For in-
stance, we have used it for early prototyping and test-case
generation [15].

We believe that runtime verification shows promise in pro-
viding automated support for keeping a specification alive
and for ensuring that an implementation correctly imple-
ments its specification.

8. REFERENCES

[1] Sergio Antoy and Richard G. Hamlet. Automatically
checking an implementation against its formal
specification. Software Engineering, 26(1):55—69, 2000.

[2] Mike Barnett, Egon Borger, Yuri Gurevich, Wolfram
Schulte, and Margus Veanes. Using Abstract State
Machines at Microsoft: A case study. In Abstract State
Machines: Theory and Applications, volume 1912 of
LNCS, pages 367-379, Berlin, Germany, March 2000.
Springer-Verlag.

[3] Mike Barnett, Lev Nachmanson, and Wolfram
Schulte. Conformance checking of components against
their non-deterministic specifications. Technical
Report MSR-TR-2001-56, Microsoft Research, June
2001. Available from
http://research.microsoft.com/pubs.

12

[4] Detlef Bartetzko, Clemens Fischer, Michael Méller,
and Heike Wehrheim. Jass — Java with Assertions.
http://semantik.informatik.uni-
oldenburg.de/~jass/doc/index.html.

[5] A. Blass, Y. Gurevich, and S. Shelah. Choiceless
Polynomial Time. Annals of Pure and Applied Logic,
100:141-187, 1999.

[6] Manuel Blum and Hal Wasserman. Software reliability
via run-time result-checking. Journal of the ACM,
44(6):826-849, November 1997.

[7] Don Box. Essential COM. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1998.

[8] A. Duncan and U. Holze. Adding contracts to Java
with handshake. Technical Report TRCS98-32,
University of California at Santa Barbara, December
1998.

[9] Stephen H. Edwards, Gulam Shakir, Murali
Sitaraman, Bruce W. Weide, and Joseph
Hollingsworth. A framework for detecting interface
violations in component-based software. In
P. Devanbu and J. Poulin, editors, Proceedings: Fifth
International Conference on Software Reuse, pages
46-55. IEEE Computer Society Press, 1998.

[10] Ulfar Erlingsson and Fred B. Schneider. SASI
enforcement of security policies: A retrospective.
Technical Report TR99-1758, Cornell University,
Computer Science, July 19, 1999.

[11] Robert Bruce Findler and Matthias Felleisen.
Behavioral interface contracts for java. Technical
Report TR00-366, Department of Computer Science,
Rice University, August 2000.

[12] Robert Bruce Findler, Mario Latendresse, and
Matthias Felleisen. Object-oriented programming
languages need well-founded contracts. Technical
Report TR01-372, Department of Computer Science,
Rice University, 6100 South Main Stree, Houston,
Texas, 77005, 2001.

[13] Microsoft Research Foundations of Software
Engineering, 2001.
http://research.microsoft.com/fse.

[14] Uwe Gléasser, Yuri Gurevich, and Margus Veanes.
Universal plug and play machine models. Technical
Report MSR-~TR-2001-59, Microsoft Research, June
2001. Available from
http://research.microsoft.com/pubs/.

[15] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte,
and Margus Veanes. Testing with Abstract State
Machines. In Formal Methods and Tools for Computer
Science, Furocast 2001, pages 257-261. ITUCTC
Universidad de Las Palmas de Gran Canaria, February
2001. Submitted for inclusion in LNCS ASM 2001.

[16] Y. Gurevich. Evolving Algebras 1993: Lipari Guide.
In E. Borger, editor, Specification and Validation
Methods, pages 9-36. Oxford University Press, 1995.

[17] Angel Herranz-Nieva and Juan Jose Moreno-Navarro.
Generation of and debugging with logical pre and
post-conditions. http://lml.ls.fi.upm.es/slam/.

[18] H.B. Jonker. Ispec: Towards practical and sound
interface specifications. In IFM’2000, volume 1954 of
LNCS, pages 116-135, Berlin, Germany, November
1999. Springer-Verlag.

[19] G. T. Leavens and M. Sitaraman (eds.). Foundations

Gary T Leavens
12

[21]

of Component-Based Systems. Cambridge University
Press, New York, NY, 2000.

Gary T. Leavens and Krishna Kishore Dhara.
Concepts of behavioral subtyping and a sketch of their
extension to component-based systems. In Gary T.
Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, chapter 6, pages
113-135. Cambridge University Press, 2000.

K. Rustan M. Leino. Applications of extended static
checking. In Patrick Cousot, editor, Static Analysis:
8th International Symposium (SAS’01), Lecture Notes
in Computer Science, pages 185—-193. Springer, July
2001.

Barbara Liskov and Jeannette Wing. A behavioral
notion of subtyping. ACM Transactions on
Programming Languages and Systems,
16(6):1811-1841, November 1994.

Bertrand Meyer. Fiffel: The Language.
Object-Oriented Series. Prentice Hall, New York, NY,
1992.

Bertrand Meyer. Object-oriented Software
Construction. Prentice Hall, New York, NY, second
edition, 1997.

P. Miiller and A. Poetzsch-Heffter. Modular
specification and verification techniques for
object-oriented software components. In Foundations
of Component-Based Systems [19], pages 137-160.
Clemens Szyperski. Component Software.
Addison-Wesley Publishing Company, Reading,
Massachusetts, 1999.

13

Gary T Leavens
13

Toward Reflective Metadata Wrappers for Formally

Specified Software Components

Stephen H. Edwards
Virginia Tech, Dept. of Computer Science
660 McBryde Hall
Blacksburg, VA 24061-0106 USA
+1 540 381 3020

edwards@cs.vt.edu

ABSTRACT

Abstract behavioral specifications for software components hold
out the potential for significantly improving a software engineer’s
ability to understand, predict, and reason soundly about the be-
havior of component-based systems. Achieving these benefits,
however, requires that specifications be delivered along with
components to the consumer. This paper considers the question
of what is the best way to package specification and verification
information for delivery along with a component. Rather than
distributing specifications in “source” form, an alternate solution
based on reflection is presented. A reflective interface that sup-
ports program-level introspective access to behavioral descrip-
tions is proposed. By embodying this interface in a wrapper com-
ponent, it becomes possible for the reflective interface to also
support services for contract violation checking, self-testing, and
abstract value manipulation, even when the underlying component
technology does not have built-in reflection capabilities.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
formal methods, programming by contract, assertion checkers,
class invariants; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—
specification techniques, pre- and post-conditions, invariants,
assertions; D.2.3 [Software Engineering]: Coding Tools and
Techniques—object-oriented programming;, D.2.5 [Software
Engineering]: Testing and Debugging—debugging aids.

General Terms
Design, Verification.

Keywords
Formal specification, reflection, design by contract, representation
invariant, wrapper class, unit test, integration test.

1. INTRODUCTION

Component-based software development (CBSD) is becoming
more prevalent every day, carrying with it the hope for greater
productivity and software quality. Indeed, off-the-shelf compo-
nents should be well-seasoned, well-tested, and more reliable than
newly written code. An even greater benefit potentially can be
provided by well-designed software components, however: they—
or more correctly, the abstract specifications that explain their
behavior—can help software engineers understand, predict, and

reason soundly about the dynamic behavior of component-based
software systems. Efforts at formally specifying the behavior of
software components aim at maximizing this effect.

To achieve this benefit for a commercial component, naturally the
component’s (formal) specification must be distributed along with
the component itself. For most commercial component technolo-
gies, including COM and its derivatives, CORBA, JavaBeans,
ActiveX, and .NET, components are distributed in a binary form.
Indeed, a central issue in reasoning about component-based soft-
ware is the problem of correctly reasoning about composite be-
haviors when source code is unavailable. If the component pro-
vider is going to deliver a behavioral specification as well, in what
form will it be delivered?

This position paper explores the question of how best to package
and deliver a component’s formal specification, as well as associ-
ated non-code information, along with the component’s imple-
mentation. Section 2 outlines the problem, while Section 3
sketches a possible solution: delivering a wrapper component that
provides access to a wide variety of information, including speci-
fication details, through a standardized, reflection-based interface.
Section 4 explores the various kinds of metadata and services that
may be appropriate to provide through such a reflective wrapper.
Section 5 summarizes the limitations of the approach, Section 6
outlines relations with previous work, and Section 7 summarizes
the issues covered.

2. PROBLEM AND SIGNIFICANCE

The problem under consideration, as introduced in Section 1,
supposes that a component provider also wishes to provide a for-
mal specification (perhaps along with verification information)
when a component is delivered:

What is the best way to package specification and verifi-
cation information for distribution to clients along with
a component?

One of the primary driving factors in binary packaging of com-
mercial components is protection of proprietary information or
trade secrets embodied in the component’s implementation. This
concern does not arise with specifications, of course. The client
cannot receive many of the benefits of having a component’s be-
havioral specification unless the specification is completely acces-
sible. “Hiding” a specification clearly is at direct odds with the
value added by distributing it with a component in the first place.
This leads to the naive view that a formal specification should be
delivered in human-readable “source” form. Even something as

Gary T Leavens
14

simple as a text file containing the specification in a suitable for-
mal notation should suffice.

This simple approach to distributing specifications treats them the
same as traditional documentation, which is distributed most fre-
quently in printed form, as plain text, as HTML, or in a platform-
specific help file format. Besides simplicity, source distribution
of specifications has another strength: it highlights and reinforces
the fact that specifications are designed for communication with
software engineers—they are written for other people to read. In
essence, isn’t a formal specification the ultimate in rigorous
documentation?

While the value of reading specifications cannot be underesti-
mated, treating specifications as “plain old documentation” misses
the opportunity to appropriately leverage those specifications in
development tools, during component composition, and during
automated reasoning or verification tasks. It is certainly possible
to force every CBSD tool to pick some specification notation,
support parsing/internalization of that notation, and maintain its
own representation of the relations between specifications and
components. Unfortunately, this strategy implies a huge duplica-
tion of effort among CBSD tool implementers, conflicting choices
made in different tools, and a number of other inefficiencies. Asa
result, in asking what is the “best” way to package specifications
for distribution, this paper is aiming to support both human and
tool consumption and use of specifications.

The significance of this problem to researchers in formally speci-
fied components is apparent: a component’s client cannot reap
many of the benefits of a specification unless the specification is
delivered with the component. Similarly, the specification should
be delivered in a form that conveniently supports all of the activi-
ties the client may wish to perform, including both people-
oriented and tool oriented tasks.

3. APOSSIBLE SOLUTION: REFLECTIVE
METADATA WRAPPERS

If providing specifications (and other related information) as
traditional documentation has disadvantages, what alternatives are
available? Consider the history of software components. Provid-
ing specifications in source form is analogous in some ways to the
“old days™ when reusable components were subroutine libraries
shared as source code files among programmers. While the client
could always refer to the code, the critical interface information
(the name, parameter profile, description, and usage of each sub-
routine) was typically provided in embedded comments or as
separate documentation.

Component packaging and distribution has evolved enormously
since subroutine libraries first came into use, however. While
traditional documentation typically is provided for commercial
components, most commercial component technologies, including
COM, CORBA, JavaBeans, ActiveX, and .NET all provide some
API for “inspecting” a component’s interface. In effect, a compo-
nent “knows” what it exports, and a client can use a well-defined
interface to “ask™ what operations are available, how many pa-
rameters of what type are needed, what properties are provided,
and so on. Such an interface is a wonderful boon to component
packaging. It naturally allows any development environment to
immediately manage and support any newly installed component,
it supports “plug-in”-style integration of new features in applica-

tions, it supports automatic checks for (syntactic) interface com-
patibility during composition, and it can even support general-
purpose component-level scripting tools in some cases.

3.1 Reflect for a Moment

The ability of a component to respond to queries about its own
structure, behavior, or implementation is the cornerstone of re-
flection [24, 11]. Reflective software is capable of representing
(and thus operating on at run-time) some aspect(s) of itself.
Computational reflection is the activity of a computational sys-
tem when computing about or operating on (and thus potentially
altering) its own computation [17]. This concept arose in the
programming language arena, and has seriously impacted object-
oriented programming language design.

A reflective component can provide two different forms of reflec-
tion services: introspective capabilities provide read-only access
for inspecting component properties, while intercessory services
allow one to modify a component or alter its behavior in some
way [11]. While intercessory protocols are at the heart of compu-
tational reflection and metaprogramming [11, 16], the more re-
stricted introspective protocols supported by most component
technologies are still powerful tools. In effect, “interface inspec-
tion” APIs supported by most commercial components are simply
scaled down introspective interfaces.

If a typical component (say. a JavaBean) already supports a stan-
dardized interface for reporting on the syntactic properties of its
exported features, how difficult can it be to extend that interface
to include access to specification-level descriptions? Perhaps the
more interesting question is how far can this strategy be taken?

Many OO languages that support reflection, including Java, do so
by associating each object with a metaobject that encapsulates
information about how that object is structured and how it be-
haves. Often in class-based OO languages, an object’s metaobject
is a singleton object representing its class. This class object sup-
ports methods to determine the name and parameter profile of the
methods supported by instances of the class, the name and type of
instance and class-wide data members, the name and number of
superclasses, and so on. A class object may also offer interces-
sory capabilities, such as changing the way method dispatch is
supported. Normally, supporting intercessory capabilities re-
quires the metaobject approach to be built-in to the language.

By analogy, it is possible to turn a behavioral specification into a
stand-alone component that provides a standard interface for in-
specting all facets of the specification. Whereas a traditional
OOPL “class™ object represents a class® structural or syntactic
interface, a specification object instead represents a specification’s
structural and behavioral description. All of the normal reason-
ing and structuring techniques applied to abstract class collections
and hierarchies could also be applied to specification objects. In
effect, this strategy turns a behavioral specification into another
operational component that can be delivered alongside the origi-
nal component it describes.

Now providing specification information for components appears
to be a simple matter: simply design a metaobject system similar
to that used in a class-based OOPL, except that metaobjects model
and allow access to formal behavioral descriptions instead of sim-
ply syntactic interfaces. If we wish to limit ourselves only to in-
trospection, this approach may be satisfactory. However, inter-
cessory services cannot easily be added through specification

Gary T Leavens
15

objects alone if one is working using an existing component tech-
nology where metaobject-based reflection is not built-in to the
component model.

3.2 Decorating With Wrappers

Specification objects are a powerful idea, particularly for provid-
ing introspective capabilities and for sharing specifications among
behaviorally interchangeable components. Introducing them re-
quires little more than adding some kind of GetSpecifica-
tion() method to a component’s interface. On the other hand,
can intercessory services (that allow changes to component-level
behavior) be added to components that are implemented using a
non-reflective language or component technology?

It is possible to add some (but obviously not all) intercessory
capabilities to any component with the correct design. The deco-
rator pattern [7] suggests a simple approach that is suitable to the
situation at hand: add the reflective interface by packaging the
new operations in a wrapper component. This wrapper should
conform to the original specification, but will delegate all of the
work involved in the original operations to the component it
wraps. We can call such a component a reflective specification
wrapper (or simply reflective wrapper). At a minimum, this re-
flective wrapper provides the GetSpecification() access to
a stand-alone specification object. Further, by interposing a sepa-
rate processing layer between the client and the underlying com-
ponent, it becomes possible to add or remove features before or
after component operations. This supports a degree of interces-
sory customization—here, changing the behavior of the wrapper
by turning some features on or off, rather than modifying the be-
havior of the underlying component. Appropriately exploiting
this customization from the point of view of behavioral specifica-
tions is discussed in Section 4.

While neither the use of wrappers nor the use of reflection is a
new idea, the novelty lies in combining the two to provide pro-
gram-level access to specification information. First, the specifi-
cation information is clearly turned into another component that
can be delivered alongside the original. Further, rather than plac-
ing more operations and data inside the underlying component,
such a wrapper isolates these features in a separate layer between
the component and its client(s) (which now may include a host of
development tools in addition to other application code). This
approach, which is more in-line with object-oriented design, sepa-
rates the added features from the underlying code in a way that
can be made completely transparent to the remainder of the appli-
cation, that supports easy insertion or removal of the added capa-
bilities, and that naturally fits with conventional component dis-
tribution techniques.

Placing specification-oriented reflection features in a separate
class or component is a simple idea, but it refocuses attention with
dramatic results. It elevates the reflection features from the level
of one or two methods in a component interface up to the level of
a separately useful component abstraction. This elevation shifts
attention to the question of exactly what “meta” data or services
should be provided by a reflective specification wrapper.

3.3 Summarizing the Proposed Solution
The position espoused in this paper is that a component’s specifi-
cation (and other supporting information) should be provided as

another component (or set of components), distributed in the
normal fashion. This position is founded on three insights:

1. Reflection supports both human-readable and tool-based
access to and application of the needed information. Reflec-
tion naturally supports standardized smart browsing tools
and other document navigation aids for human understanding
[6], while it also supports uniform automated services that
rely on specification data without requiring the duplication of
effort necessitated by source code distribution.

2. Wrappers can be used to transparently add features to a com-
ponent without affecting the underlying entity. Further, they
add the ability to support limited forms of intercessory reflec-
tion, even when such features are not directly supported in
the underlying component technology.

3. If component instances are created using factories [7], client
code is completely insulated from dependencies on the con-
crete implementation used for each instance. This can en-
capsulate and even parameterize wrapping decisions, so that
reflection services can be employed when needed or stripped
out when unnecessary without altering clients.

While the position presented here is founded on a wide-ranging
collection of prior research, reflective specification wrappers in
the form described here have not yet been implemented. Instead,
this paper explores the issues and possibilities arising from the
proposed approach, both to highlight the problem of packaging
and distribution of specifications and to suggest a potential solu-
tion for exploration.

4. WHAT METADATA AND SERVICES
ARE NEEDED?

If one wishes to provide specification (and verification) informa-
tion through a reflection interface embodied in a wrapper compo-
nent, the next issue to face is the question of what data and/or
services to support through this interface. As is traditional with
reflection, the component information we are concerned with here
is truly metadata, in the sense that it describes the nature of the
component and how it behaves, in contrast to the data that the
component computes with or transforms. But exactly what meta-
data or intercessory services should be supported?

4.1 A Component’s Formal Specification

The most obvious metadata to provide is some representation of a
component’s formal specification. Just as a conventional metaob-
ject protocol provides introspective access to an object’s class, its
methods, and its fields, a reflective specification wrapper should
provide introspective access to all aspects of a component’s for-
mally specified exported interface. This is the role of the speci-
fication objects introduced in Section 3.1.

For a model-based component specification [28], the specification
object could provide access to the object’s abstract model, to the
pre- and postcondition for each operation or method, and to the
object’s abstract invariant. If an algebraic specification ap-
proach were used, access would instead be oriented toward axi-
oms and algebras. Beyond the basics, access to publicly available
fields or properties, exception behavior, and relationships to other
specifications (such as inheritance, perhaps) also need be consid-
ered.

Gary T Leavens
16

However, as Szyperski notes in his definition, there is more to a
component than just an exported interface: “A software compo-
nent is a unit of composition with contractually specified inter-
faces and explicit context dependencies only” [25]. This perspec-
tive is also shared by the 3C model [15]. As a result, it is clear
that in addition to the exported interface, a reflective wrapper
should also provide introspective access to a component’s im-
ported interface: that is, the explicit context dependencies it
places on its environment. While the exported interface captures
the contract between a component and its client, the imported
interface forms the contract(s) between a component and the
other, lower-level components on which it is built.

Taken together, providing program-level access to a component’s
import and export interfaces seems like the bulk of the problem
when it comes to packaging and distributing a component’s for-
mal specification. On the other hand, elevating the reflection
interface to a separate component focuses attention on the other
information and services that can be provided through such an
object.

4.2 A Component’s Verification History

While one’s initial concern will necessarily be with distributing
specification information, in the long term, consideration of veri-
fication information will also be useful. Was a component for-
mally verified? By hand? With tool assistance? Was model-
checking used instead? Or was a testing-based approach used? Is
a proof or proof fragment available? Upon what assumptions is
the verification based?

The extent and quality of verification performed on a component
is clearly of interest to the client. In many cases, this information
is most useful before making a component purchasing decision.
Further, in the ideal situation where local certifiability (also called
the modular reasoning property) [26] is ensured by all compo-
nents in an application, there would be little need for verification
details by the client after purchase. However, without local certi-
fiability, verification details are important in supporting applica-
tion-level verification of component compositions.
formal verification is not used systematically throughout an appli-
cation, component-level verification information may be useful in
localizing defects during testing.

4.3 Violation Checking Services

Component-based development highlights the differing needs and
perspectives of the component-provider and the component-user
[8]. It is important to provide powerful capabilities for establish-
ing a component’s quality to the component-provider. The com-
ponent-user, on the other hand, must also be provided with the
services and information necessary to test her application in com-
bination with the component.

One approach to addressing both concerns is checking interface
contracts for violations. Tn addition to simply providing access to
specification and verification information, a reflective wrapper
can also provide contract checking features. Because of the way
the wrapper is interposed between the client and the component, it
is easy to add any or all of the following run-time checks:

e Precondition checks

e Postcondition checks

Further, if

e Abstract invariant checks
e Representation invariant checks

This idea, originally proposed by the author and colleagues [3],
has been used with some success |9, 2]. Postcondition and in-
variant checking are extremely useful to the component provider
during development [1, 2, 19], while precondition checks are
useful to the client during component integration. Postcondition
and invariant checking can also be useful to the client in defect
localization during application testing.

A carefully designed reflective wrapper could allow each category
of checks to be enabled or disabled, perhaps on a per-operation
basis. Similarly, a component might even offer different levels of
checking for some conditions—fast, but less rigorous checks ver-
sus slow but tediously thorough checks, for example. An inter-
face that provides a systematic way to query the wrapper for the
checks it can provide as well as enable or disable them at desig-
nated levels would allow component composition environments to
directly support such services in a uniform way.

4.4 Self-Testing Services

Component-based approaches to software construction highlight
the need for detecting failures that arise as a result of miscommu-
nication among components. In an invited paper at the 22™ Tnter-
national Conference on Software Engineering, Mary Jean Harrold
laid out a roadmap for the future of software testing research and
identified testing techniques for component-based systems as one
of the fundamental research areas ripe for exploration [8]. Viola-
tion checking services address some aspects of testing-based
component verification, but additional testing support can be
critical in supporting an application develop in the process of
verifying an application in combination with a component.

It is possible for a reflective wrapper to provide self-testing capa-
bilities in addition to violation checking services. For example, a
selection of component developer-provided test suites (from short
and simple to long and thorough) could be embodied in the reflec-
tive wrapper. Self-testing can then be performed by executing a
selected test suite on the wrapped component—perhaps while also
enabling interface violation checking.

Such a testing approach provides a natural, incremental approach
to application integration. If each component comes pre-
packaged with test data (and with violation checking services
acting in the role of test oracle), a component’s own self-test be-
comes an ideal “real world” test for the lower-level components
on which it depends.

Such an approach could even be expanded to support the integra-
tion of client-written test suites into the self-testing scheme.
Bruce Weide has also suggested that such a wrapper could poten-
tially be augmented to provide operation call/parameter record
and playback capabilities [27].

At this point, the benefit of intercessory services from the point of
view of component specifications becomes clear. An appropri-
ately structured reflective wrapper can provide for changes in its
own behavior—it can allow one to enable or disable specific ac-
tions that occur immediately before or after it delegates calls to
the wrapped implementation. Although this does not support
intercessory actions on the underlying component, simply adding
or removing certain actions before and after delegating to the

Gary T Leavens
17

wrapped component supports many powerful capabilities oriented
toward component composition and testing-based verification.

4.5 Abstract Value Manipulation

The component wrapping scheme previously proposed for inter-
face violation checking [3] uses a novel approach to implementing
checks before and after operations. Instead of implementing
checks in terms of the concrete implementation values inside the
underlying component (and thus violating encapsulation), the
component is required to provide the computational equivalent of
an abstraction function (or abstraction relation). Program-level
classes that correspond to the various mathematical modeling
types used in defining the state model and pre- and postconditions
for the component are used to represent abstract (specification-
level) values. The result is that the wrapper asks the component
to “project™ an abstract value of its current state as a separate ob-
ject. All checking and analysis is then done on this object, which
is designed to mimic the corresponding mathematical abstraction.

This abstraction relation approach can be co-opted for a reflective
specification wrapper to provide additional intercessory capabili-
ties. If a component were to provide both an abstract-relation-
based projection function (“convert-to-abstract-model”) and a
corresponding injection function (“convert-from-abstract-
model™), then it would be possible for a development environment
or other tool to directly access and manipulate an abstract repre-
sentation of the state of a component. Further, manipulations of
that abstract representation could then be “pumped back down”
into the component itself. This approach works naturally for
components where the abstraction relation is a one-to-one map-
ping. For many-to-one or many-to-many mappings from repre-
sentations to abstract values, practical convert-from-abstract-
model injection functions are not always possible, and so such a
feature cannot be required for all reflective wrappers.

While such an interface can be used for certain kinds of metapro-
gramming, in the context of component-based software, greater
impact is likely to accrue from using such a capability within a
development environment. All components would now have a
standard interface for plugging into state visualization tools, for
prototyping and testing use, and for interfacing with model-
checking tools.

4.6 Documentation?

To come full circle, one can also consider incorporating program-
level access to component documentation through a reflective
interface, as opposed to providing specification information
through traditional documentation. JavaDoc and other embedded
documentation strategies push the documentation down into the
source code in a way that allows tools to extract, format, package,
and navigate it for human readability. In the same manner, one
can imagine the specification object obtained from GetSpeci-
fication() providing component-level, per-operation-level,
and per-parameter-level documentation strings in a form suitable
for compilation into on-line documentation, use in a component
property browser, or use in a documentation search database. As
with current components, it is likely that printed documentation
will be needed for some purposes, but providing program-
accessible documentation through a standard interface may have
unexplored benefits.

S. LIMITATIONS

There are a number of drawbacks to explore when considering the
wrapper approach proposed here. One immediate concern is that
this approach may lead to code bloat in the final application, since
each component would now be accompanied by one or more sup-
plementary classes to provide its wrapper, testing support, abstract
value manipulation, and other services. The critical aspect of the
wrapper approach is that all of these services are designed for use
during development, when specification information about com-
ponents is most valuable, rather than after delivery, when compo-
nent specifications are of little or no use to the end user. Because
these additional services wrap the underlying component during
development, it is a simple matter to remove them for final release
builds, without requiring access to the component’s source code.

Another concern is whether or not this approach will demonstra-
bly lead to better quality components. However, the position in
this paper is that reflective wrappers are designed to provide a
mechanism to deliver and later access a component’s specification
(particularly by development tools). Solving this problem is nec-
essary to allow developers of component-based software to lever-
age the formal specifications created by component developers.
One should not make the mistake of presuming that any solution
to the specification packaging and distribution problem will, by
itself, be sufficient to guarantee an increase in software quality.

A more significant concern is the question of how specifications
will be communicated through the wrapper interface. A program-
manipulable representation of specification features is necessary
for this strategy to work. One possibility is to use the Extensible
Markup Language (XML) [30] to represent specification informa-
tion, which would require the development of one or more appro-
priate Document Type Definitions (DTDs). Such a representation
must be generally acceptable in order for tools to support it. It is
difficult to imagine that one representation could work for the
myriad of specification approaches and notations available today.
Instead, such a representation would most likely require difficult
choices about the specification approach to be used.

Finally, it is clear that packaging and delivery of specifications
using the wrapper approach will require additional work by com-
ponent developers above and beyond simply creating the specifi-
cations. Generation of wrapper boilerplate and implementation of
many wrapper services, including representing and accessing
specification details, can be automated so that no additional work
is required of component developers. However, fully supporting
all of the features described in Section 4 will require some manual
effort. The primary services that may require additional devel-
oper-supplied code are:

e Precondition, postcondition, and invariant checks for viola-
tion-checking services.

e Selection (and perhaps even construction) of test suites for
self-testing services.

e Abstract model projection and injection functions to support
abstract value manipulation.

To make this approach practical, it is clear that a “sliding scale” of
wrapper functionality, where a given wrapper provides only some
subset of the reflective services described in Section 4, is desir-
able. Component developers who wish to devote the resources
necessary for implementing more comprehensive wrapper features

Gary T Leavens
18

might then have an advantage in competing for more demanding
customers.

6. RELATED WORK

The wrapper approach to providing access to specification infor-
mation was initially inspired by a prior framework for run-time
behavioral contract checking [3] and a larger strategy for end-to-
end, automated, specification-based testing [2]. This prior re-
search is also related to formal specification and to verification, as
well as specification-based testing and parameterized program-
ming. Because of the sweeping nature of the position advocated
here, it is related to and has been influenced by a wide variety of
existing work across a selection of topics in design, programming
languages, formal specification, testing, and software reuse.

Reflection has a 20-year history in programming languages [24].
and has been widely discussed at OOPSLA, at the Annual Work-
shops on Object-Oriented Reflection and Metalevel Architectures,
and more recently at the International Conference on Meta-Level
Architectures and Reflection. Kiczales has provided one of the
most influential discussions of the subject in the context of CLOS
[11]. Ferber described alternative approaches to supporting com-
putational reflection in class-based OOPLs [5]. The proposal in
this paper adds nothing new to the realm of reflection—instead it
aims to take what has been learned about reflection in the design
of object-oriented languages and reapply those insights to a new
problem: packaging and providing access to specification infor-
mation and related services. The primary difference in the ap-
proach proposed here is that many useful reflection capabilities
can be provided within a framework that does not support reflec-
tion simply by using wrappers (although general computational
reflection cannot, of course). Past work involving formal specifi-
cation and reflection has primarily focused on reflection as a
specification technique, or on how to specify reflective behavior
[14, 23].

Within the reuse community, the issue of providing program-level
access to specification features has received little attention. The
question of how and what to describe in relation to a component’s
verification history, however, has been discussed widely under the
topic of “component certification” [20, 4, 29, 21, 10]. Lessons
from the reuse community provide much insight into what kinds
of information may be useful to clients in this regard.

The interface violation checking approach described here [3]
naturally meshes with Bertrand Meyer’s view of design by con-
tract [18]. A violation checking wrapper is intended to provide
run-time checking of such contractual obligations while separat-
ing such checks from either of the parties involved. The value
added by the wrapper approach results from separating the check-
ing code from both the client and the base component and
promoting it to a separately manageable class. This addresses
concerns about clutter, expression of more complex conditions,
and detracting from the focus of the underlying implementation,
while allowing one to easily include or exclude checks on a per-
component basis in a plug-and-play fashion.

Alternative approaches to run-time assertion checking include
Eiffel [19], iContract [13], Rosenblum’s Annotation Pre-
Processor (APP) [22], and Kiczales® Aspect] [12]. Eiffel supports
compiler-generated run-time checks based on user-provided Boo-
lean assertions phrased in terms of publicly exported class fea-
tures. iContract provides services similar to those of Eiffel, but

19

for Java programs. APP allows separately defined checking op-
erations to be compiled into or out of C code for assertion check-
ing, but makes no distinction between values at the abstract,
specification level and the concrete, implementation level. As-
pectl allows one to create a separate aspect containing checking
code and then choose whether or not to weave this cross-cutting
decision into a non-checking implementation at build time. In
many ways, Aspectl] is philosophically closest to the approach
advocated here.

The self-testing concepts folded into the reflective wrappers pro-
posed here have been most heavily influenced by current research
in automated, specification-based testing [2]. The idea of provid-
ing self-testing capabilities through a standard interface is or-
thogonal to the approach(es) used to generate test suites and the
approach(es) used to assess correctness. As a result, virtually any
testing approach could be integrated into the wrapper strategy.

7. SUMMARY

For clients to receive the benefits provided by formal specifica-
tions, those specifications must be distributed to clients along
with the components they describe. The discussion presented
here explores some of the issues surrounding the question of how
best to package and deliver such specification information.

The position taken in this paper is that a component’s specifica-
tion (and other supporting information) should be provided as
another component (or set of components), consisting of a reflec-
tive specification wrapper and associated specification objects.
This position is based on three insights: reflection supports both
human-oriented and tool-oriented access to specifications; a
wrapper approach cleanly allows the addition of interface func-
tionality and opens up powerful reflection capabilities, even when
the underlying component technology does not support reflection;
and the whole scheme can be implemented in a manner transpar-
ent to client code.

Given this position, potential introspective and intercessory ser-
vices for reflective specification wrappers were explored. In addi-
tion to specification and verification information, reflective wrap-
pers could potentially be used to provide services for violation
checking, self-testing, and even abstract value manipulation.
Even documentation could be accessed programmatically through
a reflective wrapper. Although such reflective specification wrap-
pers have not been implemented in the form proposed here, their
potential deserves further investigation.

The position taken in this paper only outlines one possible
mechanism for packaging and delivering specification informa-
tion, however. While many of the services and capabilities sug-
gested in this paper require significant research issues to be ad-
dressed before one can capitalize on the wrapper approach, the
services are orthogonal enough that progress can be made incre-
mentally. Nevertheless, the cornerstone of the approach involves
capturing and representing “plain old specifications.” First and
foremost, this research issue must be solved for the position es-
poused here to be viable. A program-manipulable representation
of specification features is necessary for this strategy to work—
perhaps one based on XML. Such a representation must be gen-
erally acceptable in order for tools to support it. It is difficult to
imagine that one representation could work for the myriad of
specification approaches and notations available today. Instead,

Gary T Leavens
19

such a representation would most likely require difficult choices
about the specification approach to be used.

8. ACKNOWLEDGMENTS

Bruce Weide, Murali Sitaraman, and Joseph Hollingsworth have
all contributed to the basic approach proposed in this paper; their
contributions are greatly appreciated. In addition, we gratefully
acknowledge financial support from Virginia Tech and from the
National Science Foundation under grant CCR-0113181. Any
opinions, conclusions or recommendations expressed in this paper
are those of the author and do not necessarily reflect the views of
NSF or Virginia Tech.

9. REFERENCES

[1] Edwards, S.H. Black-box testing using flowgraphs: An ex-
perimental assessment of effectiveness and automation
potential. Software Testing, Verification and Reliability,
Dec. 2000; 10(4): 249-262.

[2] Edwards, S.H. A framework for practical, automated black-
box testing of component-based software. Sofiware Testing,
Verification and Reliability, June 2001; 11(2).

[3] Edwards, S., Shakir, G., Sitaraman, M., Weide, B.W., and
Hollingsworth, J. A framework for detecting interface viola-
tions in component-based software. In Proc. 5th Int'l Conf.
Software Reuse, IEEE CS Press: Los Alamitos, CA,1998, pp.
46-55.

[4] Edwards, S.H., and Weide, B.W. WISRS8: 8" Annual Work-
shop on Software Reuse: Summary and working group re-
ports. ACM SIGSOFT Software Engineering Notes,
Sept./Oct. 1997; 22(5): 17-32.

[5] Ferber, J. Computational reflection in class based object-
oriented languages. ACM SIGPLAN Notices (Proc. OOP-
SLA’89), Oct. 1989; 24(10): 317-326.

[6] Foote, B., and Johnson, R.E. Reflective facilities in Small-
talk-80. ACM SIGPLAN Notices (Proc. OOPSLA’89), Oct.
1989; 24(10): 327-335.

[7] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[8] M.J. Harrold. Testing: A road map. In The Future of Sofi-
ware Engineering, A. Finkelstein, ed., ACM Press, New
York, NY, 2000, pp. 61-72.

[9] Hollingsworth, J.E., Blankenship, L., and Weide, B.W. Ex-
perience report: Using RESOLVE/C++ for commercial soft-
ware. In Proc. ACM SIGSOFT 8th Int’l Symposium on the
Foundations of Software Engineering (San Diego, CA, No-
vember 2000), ACM, pp. 11-19.

[10]1EEE. Supplement to IEEE Standard for Information Tech-
nology—Software Reuse—Data Model for Reuse Library In-
teroperability: Asset Certification Framework. IEEE Std
1420.1a-1996, Apr. 3, 1997.

[11]Kiczales, G., des Rivieres, J., Bobrow, D.G. The Art of the
Metaobject Protocol. MIT Press, 1992.

20

[12]Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W.G. Aspect-oriented programming with As-
pectl. Available on-line at http://www.aspectj.org.

[13]Kramer, R. iContract—the Java design by contract tool. Tn
Proc. Technology of Object-Oriented Languages, TOOLS
26, IEEE CS Press, 1998, pp. 295-307.

[14] Kurihara, M. and Ohuchi, A. An algebraic specification of a
reflective language. In Proc. 15" Annual Int’l Computer
Software and Applications Conf., COMPSAC 91, IEEE CS
Press, 1991, pp. 231-236.

[15]Latour, L., Wheeler, T., and Frakes, B. Descriptive and pre-
dictive aspects of the 3Cs model, SETA1 working group
summary. Ada Letters (Proc. 1* Symp. Environments and
Tools for Ada), Spring 1991; 11(3): 9-17.

[16]Lee, A.H. and Zachary, J.L. Reflections on metaprogram-
ming. [EEE Trans. Sofiware Engineering, Nov. 1995;
21(11): 883-893.

[17]Maes, P. Concepts and experiments in computational reflec-
tion. ACM SIGPLAN Notices (Proc. OOPSLA '87), Dec.
1987; 22(12): 147-155.

[18] Meyer, B. Applying “design by contract.” Computer, Oct.
1992; 25(10): 40-51.

[19]Meyer, B. Object-Oriented Software Construction, 2nd
Edition. Prentice Hall PTR: Upper Saddle River, New Jer-
sey, 1997.

[20] Poulin, J., and Tracz, W. WISR'93: 6" Annual Workshop on
Software Reuse: Summary and working group reports. ACM
SIGSOFT Software Engineering Notes, Jan./Feb. 1994;
19(1).

[21]Rohde, S.L., Dyson, K.A., Geriner, P.T., and Cerino, D.A.
Certification of reusable software components: Summary of
work in progress. In Proc. 2™ IEEE Int'l Con. Engineering
of Complex Computer Systems. IEEE CS Press, 1996,
pp.120-123.

[22]Rosenblum, D.S. A practical approach to programming with
assertions. [EEFE Trans. Sofiware Eng., Jan. 1995; 21(1): 19-
31.

[23] Saeki, M., Hiroi, T., and Ugai, T. Reflective specification:
Applying a reflective language to formal specification. In
Proc. 7™ Int’l Workshop on Software Specification and De-
sign, IEEE CS Press, 1993, pp. 204-213.

[24] Smith, B. Reflection and semantics in a procedural lan-
guage. Technical Report 272, Massachusetts Institute of
Technology, Laboratory for Computer Science, Cambridge,
MA, 1982.

[25] Szyperski, C. Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1998.

[26] Weide, B.W., Heym, W.D., and Hollingsworth, J.E. Reverse
engineering of legacy code exposed. In Proc. 17" Int’l Conf.
Software Engineering, ACM, Seattle, WA, Apr. 1995, pp.
327-331.

[27] Weide, B.W., Heym, W.D., and Ogden, W.F. “Modular re-
gression testing”: Connections to component-based software.
In Proc. 9" Annual Workshop on Software Reuse, Jan., 1999.

Gary T Leavens
20

[28] Wing, I.M. A specifier's introduction to formal methods. [30] www.xml.org.
1EEE Computer, Sept. 1990; 29(9): 8-24.

[29] Wohlin, C., and Runeson, P. Certification of software com-
ponents. /[EEE Trans. Software Engineering, June 1994;
20(6): 494-499.

21

Gary T Leavens
21

Architectural Reasoning in ArchJava
Jonathan Aldrich Craig Chambers

Department of Computer Science and Engineering
University of Washington
Box 352350
Seattle, WA 98195-2350 USA
+1 206 616-1846

{jonal, chambers}@cs.washington.edu
Abstract This paper presents ArchJava, a small, backwards-compatible
Software architecture is a crucial part of the specification of €Xtension to Java that integrates software architecture smoothly
component-based systems. Reasoning about software architectut&ith Java implementation code. Our design makes two novel
can aid design, program understanding, and formal analysis.contributions:
However, existing approaches decouple implementation codee ArchJava seamlessly unifies architectural structure and

from architecture, allowing inconsistencies, causing confusion, implementation in one language, allowing flexible

violating architectural properties, and inhibiting software implementation techniques, ensuring traceability between
evolution. ArchJavais an extension to Java that seamlessly architecture and code, and supporting the co-evolution of
unifies a software architecture with its implementation. architecture and implementation.

ArchJava’s type system ensures that the implementation conforms
to the architectural constraints. Therefore, programmers can
visualize, analyze, reason about, and evolve architectures with
confidence that architectural properties are preserved by the
implementation.

ArchJava also guarantees communication integrity in an
architecture’s implementation, even in the presence of
advanced architectural features like run time component
creation and connection.

The rest of this paper is organized as follows. After the next
section’s discussion of related work, section 3 introduces the
. . o ArchJava language. Section 4 formalizes ArchJava’s type system
Software architecture [GS93][PW92] is the organization of a and outlines a proof of soundness and communication integrity in

tsof_twaltre SﬁteT as a Icc()jllectlon (if Tteractlng cct)mponents.t_ AArchJava. Section 5 briefly describes our initial experience with
ypical architecture includes a set o Components, CONNECUONSA o 34y, Finally, section 6 concludes with a discussion of future
between the components, and constraints on how component%vork
interact. Describing architecture in a formal architecture '

description language (ADL) [MTO00] can make designs more 2 Related Work

precise and subject to analysis, as well as aid programa nymber of architecture description languages have been defined
understanding, implementation, evolution, and reuse. to describe, model, check, and implement software architectures
Existing ADLs, however, are loosely coupled to implementation [MTO0]. Many ADLs support sophisticated analysis, such as
languages, causing problems in the analysis, implementation,checking for protocol deadlock [AG97] or formal reasoning about
understanding, and evolution of software systems. Some ADLscorrect refinement [MQR95]. Some ADLs allow programmers to
[SDK+95][LV95] connect components that are implemented in a fill in implementation code to make a complete system
separate language. However, these languages do not guarant@eV95][SDK+95]. However, there is no guarantee that the
that the implementation code obeys architectural constraints, buimplementation respects the software architecture unless
instead rely on developers to follow style guidelines that prohibit programmers adhere to certain style guidelines.

common programming idioms such as data sharing. Architecturesryis such as Reflexion Models [MNSO01] have been developed
described with more abstract ADLs [AG97][MQR9S5] must be , ghow an engineer where an implementation is and is not
implemented in an entirely different language, making it difficult qngjstent with an architectural view of a software system. These
to trace architectural features to the implementation, and allowing;q|s are particularly effective for legacy systems, where rewriting

the implementation to become inconsist.en't with the architecture hq application in a language that supports architecture directly
as the program evolves. Thus, analysis in existing ADLs may ,,5u1d be prohibitively expensive.

reveal important architectural properties, but these properties are) o
not guaranteed to hold in the implementation. The UML is an example of specification languages that support

.) various kinds of structural specification. UML'’s class diagrams

In order to enable architectural reasoning about an can show the relationships between classes, and UML's object
implementation, the implementation must obey a consistency giagrams show relationships between object instances. However,
property calledcommunication integrityy MQRO5][LVIS]. A iy most UML tools, these diagrams are only intended to show
system has communication integrity if implementation gomeqf the ways in which classes and objects can interact—they
components only communicate directly with the components they cannot pe used to argue that no other kinds of interaction are
are connected to in the architecture. possible, and thus do not support communication integrity.
Object hierarchies can be expressed using composition

1. Introduction

22

Gary T Leavens
22

relationships, but this relationship does not enforce puplic component class Parser {

communication integrity either, because elements of the public port in {
composition can still interact with outside objects. provides void setinfo(Token symbol,
. . . SymTabEntry e);
A number of computer-aided software engineering tools allow requires Token nextToken()
programmers to define a software architecture in a design throws ScanException;

language such as UML, ROOM, or SDL, and fill in the

architecture with code in the same language or in C++ or Java. Publicport out{ '
While these tools have powerful capabilities, they either do not féoﬁ'i?:sVoif””gfg%%;g?‘;;;ke” 0;
enforce communication integrity or enforce it in a restricted } 9 P '
language that is only applicable to certain domains. For example,

the SDL embedded system language prohibits all data sharing void parse(String file) {

between components via object references. This restriction ~ Token tok = in.nextToken();

ensures communication integrity, but it also makes these éilgﬂpﬁlggsss_':"e(mk)'

languages very awkward for general-purpose programming. ' '

Many UML tools such as Rational Rose or I-Logix Rhapsody, in

contrast, allow method implementations to be specified in a void parseFile(Token lookahead){ ... }
language like C++ or Java. This supports a great deal of _Void setinfo(Tokent, SymTabEntrye){...}
flexibility, but since the C++ or Java code may communicate SymTabEntry getinfo(Token t) { ... }
arbitrarily with other system components, there is no guarantee of }

communication integrity in the implementation code.

Component-based infrastructures such as COM, CORBA, and Figure 1. A parser component in ArchJavg. Thd?arser
JavaBeans provide sophisticated services such as naming, COMPOnent class uses two port® communicate with other
transactions and distribution for component-based applications. cOmPonents in a compiler. The parser'sn port declares a
Some commercial tools even provide graphical ways to connect réquired method that requests a token from the lexical
components together, allowing simple architectures to be analyzer, and a providedmethod that .|n|t|aI|zes tokens in
visualized. However, these systems have poor support for the symbol table. Theout port requires a method that
structural specification of dynamically changing systems, and compiles an AST to object code, and provides a method that
have no concept of communication integrity. Communication 100ks up tokens in the ymbol table.

integrity can only be enforced by programmer discipline following A prototype compiler for ArchJava is publicly available for
guidelines such as the Law of Demeter [LH89] that states, “only download at the ArchJava web site [ACNOla]. Although in
talk to your immediate friends” in a system. ArchJava the source code is the canonical representation of the

Advanced module systems such as MzScheme’s Units [FF98] andi"chitecture, visual representations are also important for
ML’s functors [MTH90] can be used to encapsulate components conveying archltecture_ll structure. This paper uses hand-drawn
and to describe the static architecture of a system. The FoxNeflidagrams to communicate architecture; however, we have also
project [B95] shows how functors can be used to build up acqnstructed aS|m|_3Ie visualization tool that generates archlte_c'_[ural
network stack architecture out of statically connected componentsdiagrams automatically from ArchJava source code. In addition,
However, these systems do not guarantee communication integrityV® intend to provide ararchjavadoc tool that would

in the language; instead, programmers must follow a careful automatically construct graphical and textual web-based
methodology to ensure thaach nodule communicates only with ~ documentation for ArchJava architectures.

the modules it is connected to in the architecture. To allow programmers to describe software architecture, ArchJava

More recently, the coponent-oriented programming languages adds new language constructs to suppaomponents
ComponentJ [SC00] and ACOEL [Sre01] extend a Java-like baseconnections and ports The rest of this section describes by
language to explicitly support component composition. These&xa@mple how to use these constructs to express software
languages can be used to express components and stati@rchitectures. Throughout the discussion, we show how the
architectures. ~ However, neither language makes dynamicConstructs work together to enforce communication integrity,
architectures explicit, and neither enforces communication culminating in a precise definition of communication integrity in

integrity. ArchJava. Reports on the ArchJava web site [ACNO1la] provide
more information, including the complete language semantics and
3. The ArchJava Language a formal proof of communication integrity in the core of

ArchJava is designed to investigate the benefits and drawbacks of\rchJava.

a relatively unexplored part of the ADL design space. Our

approach yextendps a F?ractical implementatign Ignguage 103-1 Components and Ports

incorporate architectural features and enforce communicationA components a special kind of object that communicates with
integrity. Key benefits we hope to realize with this approach other components in a structured way. Components are instances
include better program understanding, reliable architectural ©f component classesuch as théarser component class in
reasoning about code, keeping architecture and code consistent dgigure 1. Component classes can inherit from other components.
they evolve, and encouraging more developers to take advantag@ component instance communicates with external components

of software architecture. ArchJava’'s design also has somethrough ports. Aort represents a logical communication channel
limitations, discussed below in section 3.6.

23

Gary T Leavens
23

Compiler
out in ut in

parser [0—{ codegen

scanner

public component class Compiler {
component Scanner scanner;
component Parser parser;
component CodeGen codegen;

connect scanner.out, parser.in;
connect parser.out, codegen.in;

public static void main(String argsf]) {
new Compiler().compile(args);
}

public void compile(String args[]) {
// for each file in args do:
...parser.parse(file);...

}

Figure 2. A graphical compiler architecture and its
ArchJava representation. TheCompiler component class
contains three subcomponents—&Scanner , a Parser

and a CodeGen. This compiler architecture follows the
well-known pipeline compiler design [GS93]. The
scanner , parser , and codegen components are
connected in a linear sequence, with theut port of one

connected together. Figure 2 shows how a compiler’s architecture
can be expressed in ArchJava. The example shows that the parser
communicates with the scanner using one protocol, and with the
code generator using another. The architecture also implies that
the scanner doesiot communicate directly with the code
generator. A primary goal of ArchJava is to ease program
understanding tasks by supporting this kind of reasoning about
program structure.

3.2.1 Subcomponents

A subcomponenis a component instance that is declared inside

another component class. Components can invoke methods
directly on their subcomponents. However, subcomponents
cannot communicate with components external to their containing
component. Thus, communication patterns among components
are hierarchical.

Subcomponents are declared usingpemponent field-a field of
component type inside a component class, declared using the
component keyword. For example, the compiler component
class defines scanner, parser, and code generator subcomponents.
To enable effective static reasoning about subcomponents,
component fields are treated pmtected |, final , and not

static . Subcomponents are automatically instantiated when the
containing component is created—programmers can usewva
expression in the field initializer in order to call a non-default
constructor.

3.2.2 Connections

component connected to then port of the next conponent. The connect primitive connects two or more subcomponent
between a component instance and one or more components thgdorts together, binding each required Imogt to a provided

it is connected to. method with the same name and signature. Connections are
symmetric, and several connected components may require the

Ports declare three sets of methods, specified using the !
requires , provides , and broadcasts keywords. same method. Required methods must be connected to exactly

Providedmethods can be invoked by other components connected®"® pr(_)Vlded method. However, ”?VO"'”g a broa_dcast method
to the port. The component can invoke a disjoint se¢apired results in cqlls to eaclonnected provided method with the same
methods through the port. Each required method is implementedqame and signature.
by a component that the port is connectedBmadcastmethods Provided methods can be implemented by forwarding invocations
are just like required methods, except that they must retich to subcomponents or to the required methods of another port. The
and may be connected to an unbounded number ofsemantics of method forwarding and broadcast methods are given
implementations. in the language reference manual on the ArchJava web site
t[ACNOla]. Alternative connection semantics, such as
synchronous communication, can be implemented in ArchJava
y writing custom “smart connector” components that take the
place of ordinary @nnections in the architecture.

A port specifies both the services implemented by a componen
and the services a component needs to do its job. Require
interfaces make dependencies explicit, reducogpling between

components and promoting understanding of components in
isolation. Ports also make it easier to reason about a component’%s Communication Integrity

communication patterns. The compiler architecture in Figure 2 shows that while the parser

Each port is a first-class object that implements its required andcommunicates with the scanner and code generator, the scanner
broadcast methods, so a component can invoke these methodsnd code generator do not directly communicate with each other.
directly on its ports. For example, tlparse method calls If the diagram in Figure 2 represented an abstract architecture to
nextToken on the parsersn port. These calls will be bound be implemented in Java code, it might be difficult to verify the
to external components that implement the appropriate correctness of this reasoning in the implementation. For example,
functionality. if the scanner obtained a reference to the code generator, it could
. invoke any of the code generator's methods, violating the
3.2 Component Composition intuiton communicated by the architecture. In contrast,
In ArchJava, software architecture is expressed wd@mposite programmers can have confidence that an ArchJava architecture
componentswhich are made up of a number of subcomponents accurately represents communication between pements,
because the language semantics enforce communication integrity.

Communication integrity in ArchJava means that components in
an architecture can only call each others’hods along declared

! Note: the termsubcomponenindicates composition, whereas
the termcomponent subclasgould indicate inheritance.

24

Gary T Leavens
24

connections between ports. Each component in the architecture WebS
can use its ports to communicate with the components to which it @ eboerver

is connected. However, a component may not directly invoke the workers

methods of components other than its childreaecalise this request Router }%
communication may not be declared in the architecture—a serve
violation of communication integrity. We define communication

Worker

integrity more precisely in section 3.5. public component class WebServer {
. i component Router r;
3.4 Dynamic Architectures connect r.request, create;

The constructs described above express architecture as a static CONnect pattern r.workers, Worker.serve;
hierarchy of interacting component instances, which is sufficient

. ublic void run() { r.listen();
for a large class of systems. However, some system architectures P 01 0}

] > ' - private port create {
require creating and connecting together a dynamically provides r.workers requestWorker() {
determined number of components. Furthermore, even in Worker newWorker = new Worker();
programs with a static architecture, the top-level component must r.workers connection
be instantiated at the beginning of the application. = connect (r.workers, newworker.serve);
return connection;
3.4.1 Dynamic Component Creation }}
Components can be dynamically instantiated using the same }
syntax used to create ordinary objects. For example, Figure 2 _
shows the compiler'snain method, which creates@Gompiler public component class Router {
component and calls itavoke method. At creation timeach public port interface workers { .
ds the component instance that created it as its requires void hitpRequest(inputStream in,
component records p - ! OutputStream out);
parent component For components like€Compiler that are }
instantiated outside the scope of any component instance, the public port request {
parent component isull . requires this .workers requestWorker();
}
Communication integrity places restrictions on the ways in which public void listen() {
component instances can be usececdBise only a comenent’s ServerSocket server = new ServerSocket(80);
parent can invoke its methods directly, it is essential that typed while (true) {

Socket sock = server.accept();

references to subcomponents do not escape the scope of their this .workers conn = main.requestworker();
parent component. This requirement is enforced by prohibiting conn.httpﬁzequest(sock.getlnpuiStream(), ’
component types in the ports and public ir#egs of components, sock.getOutputStream());

and prohibiting ordinary classes from declaring arrays or fields of _}
component type. Since a component instance can still be freely }}
passed between components as an expression oOtyjeet , a

ComponentCastException is thrown if an expression is public component class Worker extends Thread {

downcast to a component type outside the scope of its parent public port serve {

component. provides void httpRequest(InputStream in,
OutputStream out) {

342 Connect expreSS|onS this .in= in; this .out = out; start();

Dynamically created components can be connected together at run }

time using aconnect expressionFor instance, Figure 3 shows a public void run() {

web server architecture whereRouter component eceives File f = getRequestedFile(in);

incoming HTTP requests and passes them through connections to SendHeaders(out);

Worker components that serve the request. The copyFile(f, out);

requestWorker method of the web server dynamically creates // more method & data declarations...

a Worker component and then connectsse&ve port to the }

workers port on theRouter .

Communication integrity requires each qmment to explicitly Figure 3. A web server architecture. TheRouter

document the kinds of architectural interactions that are permitted Subcomponent accepts incoming HTTP requests, and pass

between its subcomponents. obnnection patterris used to them on to a set ofWorker components that respond.

describe a set of connections that can be instantiated at run timeWhen a request comes in, theRouter requests a new

using connect expressions. For examptinect pattern worker connection on its requestWorker port. The

r.workers, Worker.serve describes a set of connections WebServer then creates a new worker and connects it to

between the component fietdand dynamically creatéd/orker the Route r. The Router assigns requests toVorkers

components. through the workers port.

Each connect expression must match a connection patterrcomponent field specified in the pattern, or an instance of the type
declared in the enclosing component. A connect expressionspecified in the pattern. The connect expression in the web server
matchesa connection pattern if the connected ports are identical example matches the corresponding connection pateraube

and each e@nnected component instance is either the same

25

Gary T Leavens
25

thenewWorker component in the connect expression is of static about the temporal order of architectural events, or about
typeWorker , the same type declared in the pattern. component multiplicity.

ArchJava’s definition of communication integrity supports
reasoning about communication through method calls between
components. Program objects can also communicate through data
component in the web server communicates with seVéaker sharing via gligsed objects, static fields, apd t.he runtime system.
components,each through a differentoonection. A port However, e?<|st|ng ways t.o control gommunlcatlon through shared
’ : . data often involve significant restrictions on programming style.
%uture work includes developing ways to reason about these
additional communication channels while preserving
Each port interface defines a type that includes all of the requiredexpressiveness. Meanwhile, our experience (described below)
methods in that port. Avort interface typecombines a port's suggests that rigorous reasoning about architectural control flow
required interface with annstance expressiorthat indicates can aid in program understanding and evolution, even in the
which component instance the type allowscess to. For presence of shared data structures.
example, in theRouter component, the typthis .workers . .
refers to an instance of theorkers port of the currenRouter 4. ArchJava Formalization
component (in this casthis would be inferred automatically if ~ In this section, we discuss the formal definition of communication
it were omitted). The typeworkers refers to an instance of integrity and ArchJava’s semantics. The next subsection defines

theworkers port of ther subcomponent. This type can be used communication integrity in ArchJava and intuitively explains how

3.4.3 Port Interfaces
Often a single component participates in several connections
using the same conceptual protocol. For exampleRtheer

communicate through different connections at run time.

variable declarations such a®nn in the listen method. semantics of ArchFJ, a language incorporating the core features of

Required methods can be invoked on expressions of portiegerf ArchJava. Finally, subsection 5.3 outlines proofs of

type, as shown by the call tdttpRequest within communication integrity, subject reduction, and progress for
’ ArchFJ.

Router.listen

Port interfaces are instantiated fnoect expressions. A connect 4.1 Definition of Communication Integrity
expression returns aonnection objectthat represents the Communication integrity is the key property of ArchJava that
connection. This connection object implements the port ensures that the implementation does not communicate in ways
interfaces of all the annected ports. Thus, in Figure 3, the that could violate reasoning about control flow in the architecture.

connection objectconnection implements the interfaces |ntuitively, communication integrity in ArchJava means that a
Worker.serve and rworkers , and can therefore be component instancéA may not call the methods of another
assigned to a variable of typavorkers . component instancB unlessB is A's subcomponent, ok andB

Provided methods can obtain the connection object through which@re sibling subcomponents of a common component instance that
the method call was invoked using thender keyword. The declares a connection or connection pattern between them.
detailed semantics afender and other language features are We now precisely define communication integrity in ArchJava.
covered in the ArchJava language reference available on thelet theexecution scopef component instance A on the run time

ArchJava web site [ACNO1a]. stack, denote@scopéA), be any of A’s executing methods and
. . any of the object methods they transitively invoke, until another
3.4.4 Removing Components and Connections component's method is invoked.

Just as Java does not provide a way to explicitly delete objects,
ArchJava does not provide a way to explicitly remove components P€finition 1 [Dynamic Execution Scope]: Let mbe an executing
and connections. Instead, components are garbage-collectefethod with stack framenf. If mis a component method, then
when they are no longer reachable through direct references off U escopéhis). Otherwisemf U escopécaller(mf)).
connections. For example, in Figure 3Warker component Now we can define communication integrity:

will be garbage collected when the reference to the original
worker fewWorker) and the references to its connections
(connection andconn) go out of scope, and the thread within
Worker finishes execution.

Definition 2 [Communication Integrity in ArchJava]: Let :< be

the subtyping relation over component classes. A program has
communication integrity if, for all run time method calls to a
methodmof a component instandein an executing stack frame

3.5 Limitations of ArchJava mf, wheremf [] escopéa), either:

There are currently a number of limitations to the ArchJava 1. a=b,or
approach. Our technique is presently only applicable to programs 2

! . .) . a = pareni{b), or
written in a single language and running on a single JVM, P (b)

although the concepts may extend to a wider domain. 3. parenta) = paren{b) [“connect [pattern]
Architectures in ArchJava are more concrete than architectures in Ay 2.p 1,...,(f]t) n-p n" O clasgparent{a))
ADLs such as Wright, restricting the ways in which a given 00, Ol.ns.t. paren(a).fi =a Otypga)<iti) O
architecture can be implemented—for example, inter-component (parenta).f; =b Otypeb)<:t;) O
connections must be implemented with method calls. Also, in m0 requiredmethod;) O

order to focus on ensuring communication integrity, we do not yet

.) - m0 providedmethodgp;)
support other types of architectural reasoning, such as reasoning

26

Gary T Leavens
26

Syntax:
CL ::= class C extends C {C f; K M}
CP =component clas s P extends
[P|Object] {C f; KMR X}
K 2= E(C) {super(f); this.f = f;}
M 2= T m(T x) { return e; }
R 2= required T m(T x)
X ::= connect pattern (P)
e n=x
| ef_
| e.m(e,_this)

| new C(e)

I ?Ce;/v P(e, <fresh>, e parent)
e
(e.P r€

| cast(this P, e)

| connect(e, this)
| error

Figure 4. ArchFJ Syntax

4.2 Formalization as ArchFJ
We would like to use formal techniques to prove that the
ArchJava language design guarantees communication integrity,

Types:
T =P
|leP r
|E _
|Ue.P R
Subtyping:
T<T (S-REFLEX)
S<T T <V (S-TRANS)
S <V
P <Q

=2 (S-REQUIRED)
e;Pr < €,Qp

T < Object (S-OBJECT)

_eP glePs (S-UNION)

U(eP) < ePy

CTE) =[component] class E
extendsF { .. }
E <F

(S-EXTENDS)

Figure 5. ArchFJ Types and Subtyping Rules

and show that the language is type safe—that is, show that certairaass, orObject (as in FJ, there are no interfaces). @onent

classes of errors cannot occur at run time. Unfortunately, proofs
of type safety in a language like Java are extremely tedious due t&

lasses also declare a set of required metRodsd a set of

the many cases involved, and to our knowledge the full Javaconnection patternx between their subcomponents.

language has never been formalized and proven type safeExpressions include field lookup, method calls, object and
Therefore, a standard technique, exemplified by Featherweightcomponent creation, various casts, a connect expression, and an
Java [IPW99], is to formalize a core language that captures theerror expression. These are extended from FJ in a few small

key typing issues while ignoring complicating language details.

of ArchJava in ArchFJ. ArchFJ makes a number of
simplifications relative to ArchJava. ArchFJ leaves out ports;
instead, each cgmonent class has a set of required and provided
methods. Static connections and component fields are left out, as
they are subsumed by dynamically created connections
components. We also omit tsender keyword and broadcast
methods. As in Featherweight Java (FJ), we omit mtes.
These changes make our type soundness proof shorter, but do not
materially affect it otherwise.

4.2.1 Syntax

Figure 4 presents the syntax of ArchFJ. The metavari@btesl

D range over class names;and F range over component and
class namesS, T, andV range over types? and Q range over
component classes; andg range over fieldsg ande range over
expressionst ranges over labels generated<dfgesh> ; andM
ranges over methods. As a shorthand, we use an overbar to
represent a sequence. We assume a fixed classCf@lnhapping
regular and component classes to their definitions. A program,
then, is a pair €T, e) of a class table and an expression.

ArchFJ includes the features of FJ plus a few extensions. Regular
classes extend another class (which ca®bject , a predefined

class) and define a constructét and a set of fieldsand
methodsv. Component classes can extend another component

27

ways:
We have modified Featherweight Java (FJ) to capture the essence . Al method calls capture the current objebis

in an
additional psuedo-argument which comes last and is not
passed on to the callee.

« Components are labeled with a fresh label when they are

created (labels in a method body are freshly generated when
a method call is repted with the mébd’s body). This
label allows us to reason about object identity in an
otherwise functional language (assignment is not relevant to
our type system or definition of communication integrity).
Components also keep track of their parent, and which of
their parent’'s component fields they were created with.

 In addition to regular casts to a class type, there are two new

cast forms: one that allows casting to the required interface
of a component (i.e., the set of methods the component
requires), and another that allows casting to a component
field type. The first cast accepts an instance expression type,
while the latter cast includes an argument that captures the
value ofthis in the current scope. Both arguments are
used to verify the casts in the dynamic semantics.

» A connect expression conceptually creates a connection

object on which components can invoke their required
methods. The connect expression captthiss , the parent
object that created the connection.

Gary T Leavens
27

Computation:

field€)€ T

(R-FIELD)
(new Eg,..)).f ; - e
mbogs(nc) jK_. €o) (R-INVK)
(new C(e)).m@d, d) -
[d ¥, new Ce)his e,
E<C (R-CAST)
(C)(new E(..)) - new E(..)
e=new E().. #C O e=connect(..) (E-CAST)
(C)e) - error
e =new R{,_ I: eparent)
mbodynP) =, &)
‘&E =e inms— _=eparem (R-PINVK)
dm(d g [d ¥, ethis Je,
e=newR{, |, ey,) P <Q (R-PCAST)
cast(e s, Q €) - e
e = connect(.) O
(e =new my_ l, e parent)
wheree i ¢eparem P+ Q (E-PCAST)
cast(e 45, Q, €) - error
Qast — NEew P() €ast D_e P<Q (R-RCAST)
(e Q R(connect(e,eu))
_ connect(e, e ;.)
e=new E(.) O
e:connect(e?e this)
wheree ., B [e, =new F(.) £ Q (E-RCAST)
(e casQ R)(e) - error
de De legal(connect(e , € 4.))
mbody, connect(,e w))€ &) g yinyi)

(connect(e, g,)-md, d)
[d X, ethis Je,

Figure 6. ArchFJ Reduction Rules

« We represent failed dynamic checks (such as casts) with ant
value, to make our progress theorem cleaner

explicit error
to state.

4.2.2 Types and Subtypes

ArchJava’s types and subtyping rules are given in Figure 5.

Types include class and component tydes fequired interface

types of component& P r), and union types of multiple required

interfaces. Subtyping of classes and porents is defined by the

reflexive, transitive closure of the immediate subclass relation
given by theextends clauses irCT. We require that there are

28

no cycles in the induced subtype relation. Required interface
types follow the subtyping relation of components (ignoring the
instance expressions, which are reasoned about separately from
subtyping). Finally, every type is a subtypeQ@ifject , and a
union is a subtype of all its member types.

4.2.3 Reduction Rules

The reduction relation, defined by the reduction rules given in
Figure 6, is of the forne>e’ , read “expressiom reduces to
expressione’ in one step.” We write>* for the reflexive,
transitive closure o>. The only unusual reduction rule is R-
XINVK, which allows method invocation on connection
expressions. Thembody helper function does a lookup to
determine the correct method body to invoke. Two error rules are
defined representing casts that are not guaranteed to succeed by
the type system presented below. The reduction rules can be
applied at any point in an expression, so we also need appropriate
congruence rules (such aziPe’ thene.f >e'.f), which we

omit here. Furthermore, we assume an order of evaluation that
follows Java’s normal evaluation rules.

4.2.4 Typing Rules

Most of the typing rules given in Figure 7 are standard. Typing
judgments are given in amvironment I', a finite mapping from
variables to types. Rule T-INVK places constraints on passing
connection objects to an argument position declared with a
required interface and instance expressiothisf , to ensure that

the connection object does indeed connect the receiver object.
Rule T-PNEW introduces qualified component types. Rule T-
CONNECT introduces union types for connections. In addition,
T-CONNECT verifies that some connection pattern in the current
component matches the types of the connected objects; this will
be important later for establishing that reduction cannot get stuck
due to an illegal connection.

Class, method, and connection typing rules check for well-formed
class definitions, and have the form “class declardfiois OK,”

and “method/connectioX is OK in E.” The rules for class and
method typing are similar to those in FJ. In the case of
component classes, the typing rule verifies that only subclasses of
Object may define required methods—as in ArchJava,
component subclasses may only inherit existing required methods
from their component superclass. The connection typing rule
verifies that each required rhetd has a unique provided method
with the right signature, and that every method name has only one
signature across all the required methods.

We have made one significant simplification relative to FJ. We
do not distinguish between upcasts, downcasts, and so-called
“stupid casts” which cast one type to an unrelated one. This
means that our type system does not check for “stupid casts” in
he original typing derivation, as Java’'s type system does.
However, the change shortens our presentation and proofs
considerably, and the stupid casts technique from FJ can be easily
applied to our system to get the same checks that are present in
Java.

Gary T Leavens
28

Expression Typing:

rEx0Orx) (T-VAR)
r+e0G field€)€ f (T-FIELD)
I ke f,0G
r+e0OT, mtypémTLe .)=T-T
rredsS s<T
M Egs OTwis
T, =this.P RL implies S| = e,Sg (T-INVK)
I Fem ey)Te ,/this]
field) B f r }—_eIZ]C C <D (T-NEW)
I F new Ce)OC
field®)® f T FedC C <D
r ke 0T,
(T-PNEW)

I F new FE(,_ <fresh > e)OP

rF g, rFedP P <Q
connect pattern((S)DconnectéPthis)

I F connecte, e,)0U(ePy

O I:;his

(T-CONNECT)

rFeOT,
I Hle cs-PrFe e . -PrlCl

(T-CAST)

rFedT rFege OPRue

(T-PCAST)
I F cast(e 4 Q,e)0Q

Class Typing:
K BR(, C f) {super(g); thi§. =}
fieldsE)D g NIX] OKIN P

E=Object O #(R)=0
[component] class F extends E

{C f;: KM I[R X} OK

(T-CLASS)

Method Typing:
x T, ths E FedS S<T
CT(E) =[component] class E extendsF {..}
overridgm, F, T T)
TTmQZ)_{ return

T,T_ not components

(T-METH)
e;} OKin E

Connection Typing:
Oi mtypdmP) =T —T implies
0#i st.mtypém,P,) =TT
0 Ok #] mtypén®,) not defined
Oi,j mtyp@n,Pg) =T- TOmtypém, ;) =S.5S
implies T=SOT=S
connect pattern(PY OKIN Q
Figure 7. ArchFJ Static Semantics

(T-X)

29

Field lookup:
fieldgObject)=e
CT(E) =[component] class E extends F
€ f: KM I[R X}
fieldsE)D g
fieAy =g, C f

Connection lookup:
connect@Object) =e
CT(P) =component class P extends E
C f: KMR X}
connectgb) =Z
connectB)#(_@ X

Method type lookup:

CT(E) =[component] class E extends F {..M..}
T (M ;<)_ {return ¢; }DK/I
mtypém,E) =TT

CT(E) s[component] class E extends F {..M..}

m isnotdefinedn M

mtypém,E) = mtypgm,F)

CT(P) =component class P extends E {..R_..}
required T r(1T_x_)Dﬁ
mtypém,P) =T.T

CT(P) =component class P extendsE {..R..}

m isnotdeclaredn R
mtyp@, e.P) = mtypdn, e.E)

Chis =6 mlypém,ei.PR.)_:T =T
mtypdn, U(e.Pg) ey)=T T

Figure 8. ArchFJ Auxiliary Definitions

4.2.5 Auxiliary Definitions

Most of the auxiliary definitions shown in Figures 8 and 9 are
straightforward and are taken from FJ. The connection typing
rule verifies that the passed-this expression is one of the
instance expressions in the union type. The connection method
lookup rule chooses the componémiroviding the method with
mtype based on the static types in the original connection
declaration. It is guaranteed to choose a unique component
because the amnection typing rule implies thahtypeis only
defined for one of the types in the connection. It then picks the
actual method body dynamically using the usoddody rule.
Finally, it returns the expression to be passedhas in the
method call.

The legal rule checks that a connect expression corresponds to a

connection pattern. It also verifies that the connect expression
was created inside the parent componemriash sibling.

Gary T Leavens
29

Method body lookup:
CT(E) s[component] class E extends F {..
C (@ ;)_ {return e; }DK/I
mbodynE) =K , €)

CT(E) s[component] class E extends F {..

m isnotdefinedn M
mbodim,E) = mbodym,F)

s e= ner(")
connect pattern(|5)Dconnect£Pthis)
Q_ <P mtypc{m,P‘):T'ﬁT

mbodymQ) =K, &;) _
mbody, conneet(e))x(, e ye€)

= newP (..)

Legal Connections:

= newP o (..) e =ned .| ,e,)

connect pattern(P)Cconnect®,;)

Q<P Og
legal(connect(e, e 4))

€ this

i e\ :tﬁs :ethis

Valid method overriding:

mtypéni, 7I'=_'L o0» implie§_ = and § =T,
overridgm, E, s S)

Fiaure9. More Auxiliarv Definitions

4.3 Theorems

Proof sketch: The main property required is the following term-
substitution lemma:

If ,rx:S, FeOT, and

I FdOS, whers, < S, then T F[d/xe OT, for some
T, < T,.

Lemma 1 [Term Substitution]:

Lemma 1 is proved by induction on the derivation of
,TX:S, FeldT,.

The theorem itself can then be proved by induction on the
derivation ofe, - e, , with a case analysis on the last rule used.

Lemma 1 is useful in many of the steps, and especially for the
congruence rules.

The only tricky case is to show that the preconditions of T-INVK
still hold after a reduction step. This can be shown based on a
case analysis on the introduction of required component types (T-
INVK, T-CONNECT, and T-CAST), and a lemma that term
substitution preserves the required relationships among instance
expressions.

Theorem [Progress]: Supposee is a well-typed expression.
Then eithere has arerror subexpression, @ is avaluemade
up of only new and connect expressionss b €' .

Proof sketch: The theorem is proved by induction on the
derivation of the reduction of. For each reduction rule, we
show that any valid typing for the subexpressions in the left-hand-
side, together with the assumption of progress for the
subexpression, implies the preconditions for the reduction rule.
In most cases the implication is clear, but two interesting lemmas
are necessary for rules R-PINVK and R-XINVK, respectively.

Lemma 2 [An expression of component type reduces this
or a direct child component ofthis]:

We state three main theorems: communication integrity, subjectConsider an expressiore.m¢, ..) where e.=new E(...),
reduction, and progress. Subject reduction and progress togethehpodym E) = (x.e o), andeo has a subexpressianmé , this)

imply that the ArchJava type system is sound. First, the reductionIf

rules ensure communication integrity:
Theorem [Communication Integrity in ArchFJ]:
1. For all direct method invocations on a componerhat

succeed, eitheP or P's parent component is the current
componenthis

2. For all method invocations on a connection thateed, the
current componenP is part of the connectior? and the
componentQ being invoked either have the same parent or
one is the parent of the other, and the paRentleclared a
connection pattern betwe@wandQ

Proof: Part 1 of communication integrity is ensured by the
preconditiondis =& O d tis =€parent Of R-PINVK. Part 2 of
communication integrity is ensured by the preconditign Oe

of R-XINVK as well as the definition dégal.

X :T, this :E F e OP and
e/thisle ;- * new Q(...,e), then eithee; = this
2>%e ¢.

[d/x,

Or €parent

parent

This lemma can be proved by a case analysis of the last typing
rule used in the typing derivation @f. There are only three rules
that result in a component type: T-VAR, T-PNEW, and T-PCAST
(methods cannot return component type, by the well-formed
method rule). The T-VAR rule gives a component type to a
variablex, but the only way a component type can be introduced
into I is by the component method typing rule, with x =this . If

the component type was introduced in T-PNE®/, = new
Q(...,this) and soeparent = €:. If the component type came
from T-PCAST,e1 must be of the formast(this, P, new
Q(...,eparent)) , and o) the derivation of
[dix, e/thisle , —* new Q(.,e must include a

reduction rule R-PCAST which verifies th@garent = €¢ in the

parent)

The presentation of our Subject Reduction and Progress theoremg, expression

is adapted from FJ [IPW99].
Theorem [Subject Reduction]: If I + e,0T, ande, - e, , then
r +e OT, forsome, < T,.

30

Lemma 3 [Well-typed connection expressions are legal]:If
I F connect(e, e,)OT thenlegal(connect(e, e)).

The typing rule T-CONNECT, together with Lemma 2,
demonstrates that all the required propertidegal hold.

Gary T Leavens
30

5. Evaluation [AG97] Robert Allen and David GarlalA Formal Basis for

We have written a prototype compiler for ArchJava, which is Architectural ConnectionACM Transactions on Software
available for download from the ArchJava web site [ACNO1a]. In Engineering and Methodology, 6(3):213---249, July 1997.
order to determine whether the ArchJava language enabledB95] Jeremy Buhler. The Fox Project. ACM Crossroads 2.1,
effective component-oriented programming, we undertook a case September 1995.

study applying ArchJava to Aphyds, a 12,000-line circuit design [FF98] M. Flatt and M. Felleisen. Units: Cool modules for HOT

application written in Java. languages. In PLDI'98 - ACM Conf. on Programming
Results from our case study [ACNO1b] indicate that for this Language Design and Implementation, pages 236--248,
program, the developer's architecture can be expressed in 1998.

ArchJava V\(ith relati\(ely little effort (apogt 30 programmer hours?. [GS93] David Garlan and Mary Shaw.
The resulting architecture yields insight into the program’s
communication patterns, and may be useful in eliminating
software defects.

An Introduction to
Software Architecture. In Advances in Software Engineering
and Knowledge Engineering, | (Ambriola V, Tortora G,

Eds.) World Scientific Publishing Company, 1993.

6. Conclusion and Future Work [IPW99] Atsushi Igarishi, Benjamin Pierce, and Philip Wadler.
ArchJava allows programmers to effectively express software Featherweight Java: A minimal core calculus for Java and
architecture and then seamlessly fill in the implementation with GJ. In Proceedings of ACM Conference on Object Oriented

Java code. This paper has motivated and outlined a language Languages and Systems, November 1999.
design integrating architecture and implementation, and proved[LHgg] Karl Lieberherr and lan HollandAssuring Good Style
type soundness and communication integrity in a formalization of for Object-Oriented ProgramsEEE Software, Sept 1989.

ArchJava. At every stage of development and evolution, Kh d hi
ArchJava enforces communication integrity, ensuring that the (Lves] DC Luckham, J. Vera. An Event_Base Architecture
Definition Language. IEEE Transactions on Software

implementation conforms to the specified architecture. Thus, . .

ArchJava helps to promote effective architecture-based design, ~ Engineering Vol. 21, No 9, September 1995.
implementation, program understanding, and evolution. [MNSO01] Gail C. Murphy, David Notkin, and Kevin J. Sullivan.
Software Reflexion Models: Bridging the Gap Between
Design and Implementation. To appealBEE Transactions
on Software Engineerin@001.

In future work, we intend to extend the case study to larger
programs, to see if ArchJava can be successfully applied to
programs of 100,000 lines and up. We will also investigate
extending the language design to enable more advanced reasonin®QR95] M. Moriconi, X. Qian, A.A. Riemenschneider. Correct
about component-based systems, including temporal ordering Architecture RefinementlEEE Transactions on Software
constraints on component method invocations and constraints on Engineering Vol. 21, No 4, April 1995.

data sharing between components. [MT00] Nenad Medvidovic and Richard N. Taylor. A

Classification and Comparison Framework for Software
7. Acknowledgements Architecture Description Language€EE Transactions on
We would like to thank David Notkin, Todd Millstein, Vassily Software Engineeringvol. 26, no. 1, pp. 70-93, January
Litvinov, Vibha Sazawal, Matthai Philipose, and themaymous 2000.

reviewers for their comments and suggestions. This work was
supported in part by NSF grant CCR-9970986, NSF Young
Investigator Award CCR-945776, and gifts from Sun

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. The MIT Press, Cambridge, Massachussetts,

Microsystems and IBM. 1990.
[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations
8. References for the Study_ of _Software Architecture. ACM SIGSOFT
[ACNO1a] Jonathan Aldrich, Craig Chambers, and David Notkin. Software Engineering Notes, 17:40--52, October 1992.
ArchJava web site. [SC00] J. C. Seco and L. Caires. A Basic Model of Typed
http://www.cs.washington.edu/homes/jonal/archjava/ Components. Proc. European Conference on Object-
[ACNO1b] Jonathan Aldrich, Craig Chambers, and David Notkin. Oriented Programming, 2000.
Component-Oriented Programming in ArchJava. In [SDK+95] M. Shaw, R. DelLine, V. Klein, T.L. Ross, D.M.
Proceedings of the OOPSLA '01 Wohiap on Language Young, G. ZelesnikAbstractions for Software Architecture
Mechanisms for Programming Software Components, July and Tools to Support ThenEEE Transactions on Software
2001. Available at Engineering, Vol. 21, No 4, April 95.
http://www.cs.washington.edu/homes/jonal/archjava/ [Sre01] V. C. Sreedhar. ACOEL: A Component-Oriented

Extensional Language. Unpublished manuscript, July 2001.

31

Gary T Leavens
31

Using Message Sequence Charts for Component-Based
Formal Verification’

Bernd Finkbeiner
Computer Science Department
Stanford University
Stanford, CA 94305, USA

finkbein @ cs.stanford.edu

ABSTRACT

Message sequence charts (MSCs) are are a popular tool to in-
formally explain the behavioral embedding of a component
in its environment. In this paper we investigate if MSCs
can also serve as a specification and reasoning technique
for the composition of systems from components. We iden-
tify three challenges: (1) Semantic Duality: MSCs express
global coordination properties as well as requirements on
individual components for their correct participation in an
interaction pattern. We show that the two semantics do
not always agree and suggest syntactic constraints that en-
sure the represented property can be decomposed. (2) Com-
pleteness: we define a decompositional proof rule based on
MSCs. We show that the rule is incomplete and discuss rea-
sons and possible improvements. (3) Compositionality: in
component-oriented system development, the different parts
of the system are designed independently of each other. We
suggest a composition operator for MSC specifications of
such components and outline differences to operators used
for the composition of scenarios.

1. INTRODUCTION

Component-based software development shortens the de-
sign process by allowing the software engineer to use black-
box components. A prerequisite for the composition of sys-
tems from components is adequate information about their
interface.

Here, with the notion of interface we associate not only
the signatures of the operations a component offers to its
environment; although popular, this interface notion offers
much too little information to be of value in a more rigor-

*This research was supported in part by NSF grant
CCR-99-00984-001, by ARO grants DAAGbH5-98-1-0471
and DAAD19-01-1-0723, by ARPA/AF contracts F33615-
00-C-1693 and F33615-99-C-3014 and by the Deutsche
Forschungsgemeinschaft within the priority program “Soft-
Spez” (SPP 1064) under project name InTime.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA 2001 Workshop on Specification and Verification of Component-
Based Systems Oct. 2001 Tampa, FL, USA

Copyright 2001 Bernd Finkbeiner and Ingolf Kriiger.

32

Ingolf Kriger
Department of Informatics
Technical University of Munich
80290 Munich, Germany

kruegeri@in.tum.de

ous approach to software development. Instead, we add the
component’s observable behaviors as part of our interface
notion. Approaches at component-oriented system develop-
ment, such as ROOM [32] and UML-RT [33], have a similar
but more informal interface notion. Our goal is to exploit
the extra information our interface notion offers during sys-
tem verification in the context of pragmatic and industrially
accepted engineering approaches.

It is easy to describe the signature part of a component’s
interface. But how to capture, represent, and systemati-
cally develop the behavioral aspects of an interface? Mes-
sage Sequence Charts (MSCs) have gained wide acceptance
for scenario-based specifications of component interaction
behavior (see, for instance, [20, 8, 31, 6, 29]). Due to their
intuitive notation MSCs have proven useful as a communica-
tion tool between customers and developers, thus helping to
reduce misunderstandings from the very early development
stages.

In this paper we investigate if MSCs can also serve as a
specification and reasoning technique for the composition
of systems from components. When used in a formal set-
ting, MSCs could provide the link between the verification
of individual components and the correctness proof for the
complete system.

MSCs capture the communication or collaboration among
a set of components. Typically, an MSC counsists of a set of
axes, each labeled with the name of a component. An axis
represents part of the existence of its corresponding com-
ponent. Arrows in MSCs denote communication. An arrow
starts at the axis of the sender or initiator of the communica-
tion; the axis at which the head of the arrow ends designates
the communication’s recipient or destination. Intuitively,
the order in which the arrows occur within an MSC defines
sequences of interaction among the depicted components.
Figure 1 shows an MSC that displays a sequence of interac-
tions among three components in a simple communication
protocol.

The information that an MSC captures includes several
structural and behavioral aspects. The separate axes indi-
cate logical or physical component distribution. The pres-
ence of an arrow between two axes indicates the existence
of a communication link between the corresponding com-
ponents, as well as the occurrence of interaction itself. Fi-
nally, some MSC dialects, such as [31, 22, 10], allow the
developer also to indicate state changes of individual com-
ponents contained in an MSC. Composite MSCs (C-MSCs)
extend the MSC language with additional structure, such as

Gary T Leavens
32

msc Communication Protocol

Sender Medium Receiver
[] [] []

mSgSM

mSgMR
ackR M

ackyg

Figure 1: Basic MSC specifying a communication
protocol.

loops, alternatives, or sequential composition. The example

in Figure 2 shows a communication protocol with two alter-

native outcomes: the “Receiver” process may report success
13 » H 43 M R

(“ack”) or failure (“fail”).

msc Communication Protocol With Failure

Sender Medium Receiver
[] [] []

mSgSM

Figure 2: C-MSC specifying a communication pro-
tocol with failure.

MSCs describe the embedding of individual components
into their environments, i.e., how components cooperate to
achieve a certain task in a distributed system. They hide
most of the details of local state changes of individual com-
ponents and, instead, convey the “big picture” of the collab-
orations among the referenced components. This abstract,
and integrated view on system behavior has resulted in the
application of MSCs for use case specifications, particularly
in object-oriented analysis and design, as well as for test-
case specifications and simulation-run visualizations, espe-
cially in tools for telecommunication and embedded systems.
In a sense, MSCs represent projections of the overall system
behavior onto particular services or tasks of the system; au-
tomata, another popular description technique for behav-

33

ioral aspects, typically represent projections of the overall
system behavior onto individual components.

Of increasing importance is the use of MSCs as a descrip-
tion technique for complete behavior patterns, instead of
for mere exemplary interaction scenarios, because this fa-
cilitates the MSC’s seamless integration into an overall de-
velopment process for distributed systems (cf. [24, 22], and
the references contained therein). This is a particularly use-
ful approach for the specification for component interfaces
(as opposed to complete component behavior), because of
the typically limited size of the corresponding interaction
protocols.

An MSC describes both the global system behavior, and
how each individual component should perform to establish
the desired result. In this paper we explore how this du-
ality can be used in the verification of distributed systems.
Formally, MSCs here assume the role of a decompositional
proof rule. They decompose a global specification into local
specifications which are satisfied by the individual compo-
nents. In the verification literature, this technique is known
as the assumption-commitment paradigm (cf. [12, 7]): the
environment of a component is specified only to the extent
that is necessary so that the component can guarantee its
correct operation; any implementation details about the en-
vironment are left unspecified at this point. Assumption-
commitment reasoning shifts the burden of formal verifica-
tion from the system-level down to the component-level.

While the motivation for MSC-based descriptions and
assumption-commitment specifications is similar, there is a
gap in the degree of formalization offered that must be closed
before MSCs can be used as a formal reasoning tool. In the
following sections we will discuss three challenges.

1. Semantic Duality: MSCs express global coordination
properties as well as requirements on individual com-
ponents for their correct participation in an interac-
tion pattern. We say an MSC has the decomposition
property if the two semantics agree. The decomposi-
tion property is necessary for MSCs used in compo-
nent oriented proofs, since we infer the validity of a
global property from the validity of local properties.
Unfortunately, not all MSCs have the decomposition
property. We suggest syntactic constraints that ensure
the represented property can be decomposed.

2. Completeness: For MSCs that have the decomposition
property, we can formulate a decompositional proof
rule that reduces the proof of a global property to the
verification of local component properties. The rule is
incomplete: not all valid system properties can actu-
ally be proven with the rule. We discuss reasons for
the incompleteness and possible improvements.

3. Compositionality: In component-oriented system de-
velopment, the different parts of the system are de-
signed independently of each other. Correspondingly,
their MSC specifications are unlikely to be identical
and we need a process to resolve differences. We sug-
gest such a composition operator and discuss differ-
ences to operators used for the composition of scenar-
ios.

In the following section we introduce MSCs formally, and
give a simple semantics based on w-automata; we address
the three challenges in Sections 3, 4 and 5.

Gary T Leavens
33

2. MESSAGE SEQUENCE CHARTS

MSCs have a wide spectrum of applications in the devel-
opment process, ranging from analysis to implementation
support. Correspondingly, many different interpretations
have been proposed in the literature. An MSC language
supporting requirements capture and analysis of interaction
patterns requires a very liberal underlying semantics defi-
nition; it should, for instance, not exclude other possible
interaction patterns too early in the development process.

In this paper, we focus on the verification of universal
properties. Correspondingly, we are interested in the exclu-
sion of undesired behaviors. In this section we describe a
semantics that achieves this by identifying all possible in-
teraction patterns: behaviors other than the ones that are
explicitly depicted will be excluded.

We base our semantics on w-automata. The w-regular
languages form a particularly useful class since it is closed
under complementation and intersection, it is decidable and
in fact well-supported by verification algorithms (cf. [13,
18]). We will work with a simplified definition of basic mes-
sage sequence charts. Similar definitions appear in [2, 3]; a
semantics for a richer dialect is given in [22].

DEFINITION 1 (MESSAGE SEQUENCE CHARTS). A (ba-
sic) message sequence chart (MSC) M = (P,M,E,C,0)
is a labeled graph with the following components:

e processes: a finite set P of processes or components;

e messages: a finite set M of messages, we assume
that the messages can be partitioned according to theur
sender M = UpeP Sp and according to their recipient
M =U,cp Rp; let M, denote the union S, U Rp;

e events: a finite set E of events, each process p € P has
a single initial event ep;

e interprocess edges: a set of directed edges connecting
events, labeled by messages between processes C C E X
M x E; we assume that each event appears on ezactly
one edge;

e intraprocess edges: a function O : E - EU{Ll} con-
necting events in the order in which they are displayed.
L indicates that there is no subsequent event.

The w-regular languages are recognized by w-automata.
Different types of w-automata are distinguished according to
their acceptance conditions, in the following we will use the
fairly simple Biichi acceptance condition on the transitions
(for a survey on w-automata see [36]).

DEFINITION 2 (BUCHI AUTOMATON). A Bichi au-
tomaton is a tuple A = (N, 2, I,T,F) with

e nodes: a finite set N of nodes,
e input alphabet: a finite set ¥ of input symbols,
e initial nodes: a subset I C N,

e transitions: a finite set T C N XX X N of labeled edges
connecting nodes,

e acceptance condition: a subset F C T'.

Acceptance of an input sequence is determined as follows.

34

DEFINITION 3 (ACCEPTING PATHS). For an infinite se-
quence of input symbols o : so, s1, S2, ... an infinite sequence
of transitions m = (no, so,n1), (n1, $1,n2),... 1s a path of
A on o ifng € I. A path w is accepting if some edge in F
occurs infinitely often in w.

DEFINITION 4 (LANGUAGE). The language L(A) of an
automaton A is the set of all infinite sequences o of input
symbols that have an accepting path in A.

We represent an MSC as an automaton by using sets of
“simultaneously active” events as states. There is a transi-
tion for each interprocess edge and an additional 7-transition
that simulates an internal computation step. We assume
zero-delay communication: the transitions respect the par-
tial order on the intraprocess edges as well as the synchro-
nization introduced by the interprocess edges.

DEFINITION 5 (GLOBAL SEMANTICS). Given a basic
MSC M = (P, M, E,C,O) the global semantics is given as
the associated global automaton A = (N, X, I, T, F) with

oN:?EU{L},
e ¥ =MU{r},
e I={{ep|peP}}

o T contains a set of self-loops {(n,7,n) | n € N} and
a set of transitions reacting to messages: {(n1,s,n2)}
such that

— for each e1 € n1 one of the following holds:
¥ e1 € no and there is no event e with
(e1,s,e') € C or (e,s,e1) € C,
* O(e1) € n2 and there is an event e’ € ny with
(e1,s,e') € C or (e,s,e1) € C, and

— for each ez € ny one of the following holds:

x ey € ni1 and there is no event ¢ € E with
(e1,s,e') € C or (e',s,e1) €C

* there is an event e1 € n1 such that ex = O(e1)
and there is an event e’ with (e1,s,e') € C or
(e,s,e1) € C,

o F={({Lt}n{LD}

Figure 3a shows the automaton associated with the MSC
from Figure 1. Accepting transitions are depicted with
double edges. The semantics of C-MSC constructs can be
described as the corresponding transformations on the au-
tomata. Here we restrict ourselves to sequential compo-
sition, nondeterministic alternatives, and finite as well as
infinite loops; these language constructs suffice for the pur-
poses of this paper. We refer the reader to [22] for similar
constructions for almost all of the MSC-96 standard [20].

DEFINITION 6 (AUTOMATA TRANSFORMATIONS).

For two Biichi automata A1 = (N, 2, 1,T1,F1)
and As = (N2, X, 15,1, F2) we define the result
(N", 2, I',T", F'y of the following transformations:

o sequential composition A1;Az:

— N’:N1 UN2,
— I’:Il,

Gary T Leavens
34

mSgSM

ﬂ
&

mSgMR

ﬂ
@

ackRM

ﬂ
A

ackMS

T 5

a)

—

Figure 3: Automata associated with (a) the MSC
from Figure 1 and (b) the C-MSC from Figure 2.

=T =T —{(m,s,{L}) € Th}
u {(n1757n2) | (TLl,S,{J_}) €T, ne € IZ}
U Ty

- F =F1UF,,
e alternative alt(Ai, A2):

— N' =N, UNs,
—I'=LUD,
-7 =T1UT2,
- F =F1UF,,
e finite loop loop(AJ):
- N =N,
- I'=nLU{{l}},
- T =T1U{(n,s,m) | (n,s,{L}) €eTh,me L},
- F =F,

e infinite loop loop(AY):
~ N =N,
~I'=1,
ST = {(n,5,m) | (n,5,m) € Ty, m # {1}}
u {(TL, Sam) | (TL, 5 {J-}) €T, me Il};

-]:’ :{(TL,S7m) | (n,s,m) 6.7:1,177,74 {J‘}}
U {(n,s,m) | (n,s,{L}) € Ti,me Ii}.

As an example consider again the C-MSC from Figure 2:
its associated automaton is shown in Figure 3b. Note that
both the paths that stay in node 5, and the paths that stay
in node 8 are accepting.

DEFINITION 7 (GLOBAL LANGUAGE). A (finite or infi-
nite) sequence of messages o is accepted by an MSC M if
there is an infinite sequence o' of symbols in M U {1} such
that o' with all occurrences of T removed is equal to o and
o' is accepted by the automaton associated with M.

35

3. CHALLENGE 1: SEMANTIC DUALITY

MSCs describe both the system behavior and how each
individual component should perform to establish the de-
sired result. A semantics reflecting this duality thus has
both a global language and a local language for each process
involved in the depicted collaboration.

In this section we study the relationship between the two
languages. In a first step we distinguish the messages in
whose sending or receipt a certain process is directly in-
volved, and those that are sent and received in the process’s
environment. The local semantics reflects the fact that all
messages that are not either sent or received by a given
process are hidden: the process behavior is independent of
hidden messages.

For each transition (n, s, m) in the global automaton with
a hidden message s we add all transitions (n,s’,m) with
s € (M = Myp)U{{r}}: from the process’s point of view
it is indistinguishable if it was message s that was sent, or
some other hidden message, or even no message at all.

DEFINITION 8 (LOCAL SEMANTICS). For an MSC with
processes P and global automaton A = (N,X,I,T,F), the
local semantics for a process p € P is given as the associated
local automaton A, = (N, X, I, T, F') with

e T'={(n,s,n) | (n,s,n') €T and s € M, U{r}}
U {(n,s',n') | (n,s,n') €T and
SEL—Mp—{r} and s € X — My}

o 7' ={(n,s,n') | (n,s,n') € F and s € M U {r}}
U {(n,s',n') | (n,s,n') € F and
SEL—Mp—{r} and s € X — My}

In component-oriented proofs, we infer the validity of a
global property from the validity of local properties. Hence,
we require that the global and local semantics are in agree-
ment. However, not all MSCs have this property.

More formally, we say that an MSC has the decomposition
property if the following equation holds for the global au-
tomaton A, processes P and the local automata A,, p € P:

) L(Ap) = L(A)

peEP

Figure 4 shows an MSC that does not have the decom-
position property: consider an implementation in which
process “A” first sends message “A1” and process “C” then
sends message “C2”: this interaction is not allowed by
the global semantics. It is, however, accepted by all local
automata.

Since equivalence between Biichi automata can be checked
with standard verification techniques (cf. [13]), a practical
solution is to check the decomposition property whenever
the MSC is intended to be used in a decompositional proof.

An alternative solution is to restrict the MSC syntax so
that the decomposition property is guaranteed. Causality is
such a restriction. Consider again the example in Figure 4.
There is an implicit causal relationship between messages
“A1” and “C1,” and “A2” and “C2,” respectively. If the
causalities were made explicit (for example with an extra
message between process “A” and and process “C” in one
of the alternatives), the decomposition property would hold.

We now give a syntactic characterization of a class of
causal MSCs. We introduce a few auxiliary notions: the

Gary T Leavens
35

msc Non-Causal

Figure 4: Non-causal MSC.

initial events init(M) of an MSC M are those events that
do not causally depend on any other event in M; dually, the
terminal events term(M) are those events that do not cause
any other events in M. These sets of events serve as the ba-
sis for determining whether all message sequences expressed
by an MSC are causally connected. Moreover, our aim is to
distinguish clearly between different alternatives within a C-
MSC by considering only the first message occurring within
such an alternative; therefore, we also introduce a formal
characterization for the set of first messages exchanged be-
tween two processes of an MSC.

We start by defining a causal order for the messages de-
picted in an MSC M. This serves as the basis for defining
the sets init(M) and term(M), below.

DEFINITION 9 (CAUSAL ANCESTOR). Let an MSC
M = (PM,E C,O) be given. We define an order
<C E x E on M’s events as follows. Let e, f € E, then

e<f=(e=f)vEmeM:(e,m,f)eC)V(f=0())

If we have e < f, we call e direct causal ancestor of f. By
<" we denote the reflexive, transitive closure of <. If we
have e <* f, we call e causal ancestor of f.

Thus, e € E is a direct causal ancestor of f € E, if either
e and f coincide, or e and f are the send and corresponding
receive event of the same message transmission, or e occurs
immediately before f on the axis of the same process in the
corresponding MSC M = (P, M, E,C,0O). The causal order
<* captures indirect causal dependencies. This allows us to
define initial and terminal events by structural induction on
the MSC syntax.

DEFINITION 10 (INITIAL AND TERMINAL EVENTS).

For a basic MSC M = (P,M,E C,0) and its associ-
ated causal order <™ we call an event e € E initial, if
Vf € E : e <" f holds; similarly, we call e terminal, if
we have Vf € E : f <" e. Ife is M’s initial event, we
set init(M) = {e}; if M has no initial event we define
init(M) = 0. Similarly, we set term(M) = {e} if e is M’s
terminal event, and term(M) = 0 if no terminal event
exists in M.

36

For a C-MSC M the initial and terminal events are given
as follows:

o init(M;; M) = init(M);
term(My;M2) = term(Mas);

. init(alt(Ml, M2)) = init(Ml) U init(MQ);
term(alt (M, M2)) = term(M;) U term(My);

e init(loop(M7);M>) = init(M;) U init(M>);
term(M;;loop(Ms)) = term(M1) U term(Ms);

e init(loop(M})) = init(M;);
term(loop(M7y)) = term (M)
) M

e init(loop(M{’)) = init(M,);
term(Loop(M{')) = 0.

In the definition of causal MSCs we will also constrain
what messages may occur as a first message between two
processes. We denote the set of first messages between pro-
cess p and process ¢ in the MSC M as fm (M, p, q). Formally,
let edges(p,q) denote the set of interprocess edges between
two processes p and ¢ in a basic MSC:

Edges(p7 Q) = {(6175762) €C,e,e2 € By UEq}'

The set of first messages is then defined as follows.

DEFINITION 11 (FIRST MESSAGES). For a basic MSC
M and two processes p,q with no interprocess edges between
p and q, edges(p,q) = 0, the set of first messages is empty:
fm(M,p,q) = 0. For non-empty edges(p, q), we call the edge
(e1,s,e2) € edges(p,q) where e1 is a causal ancestor to all
other send events e| with (el,s’,e5) € edges(p,q) the first
interprocess edge and the message s the first message be-
tween p and q: fm(M,p,q) = {s}. For C-MSCs the first
messages are the following sets:

o fm(M1;M2, p,q) = fm(M, p, q) if tm(M1,p,q) # 0 and
fm (Mo, p, q) otherwise;

(
° fm(alt(Mh M2)7p7 Q) = fm(M17p7 Q) U fm(M17p7 Q)
e fm(loop(M7);M2,p,q) = fm(Mi, p,q) U fm(Mi,p,q)

Gary T Leavens
36

e fm(loop(M7),p,q) = fm(Mi,p,q)
o fm(loop(MY’),p,q) = fm(Mi,p, q)

Intuitively, each process in a causal MSC should always be
able to infer which branch of the MSC is currently executed.
This is ensured with the following syntactic constraints.

DEFINITION 12 (CAUsAaL MSC). An MSC M is a
causal MSC if one of the following conditions holds.

e M is a basic MSC and has an initial event;

o M is a sequential composition M = Mi;Ms, My has a
terminal event e1, M2 has an initial event e2 and e1
and ez belong to the same process;

e M is an alternative between two causal MSCs,
M = alt(Mi,Ms), and for all processes p and q,
fm(M17p7 Q) n fm(M27p7 Q) = w

e M is a finite loop loop(M7) or an infinite loop
loop(M7’) of a causal MSC M;.

The MSC in Figure 4 is not causal, because the send-
events for messages “A1” and “C1” do not have a common
causal ancestor. In fact, the MSC would remain non-causal
if were to remove the second alternative, even though
the decomposition property holds for the resulting MSC.
Causality is hence a sufficient but not necessary condition
for the decomposition property.

Related work. The difficulty in mapping global prop-
erties to responsibilities of individual components has been
considered in the literature (cf. [25, 26, 1] among others),
sometimes under the keyword “nonlocal choice.” Besides
syntactic constraints as done for causal MSCs here, the prob-
lem can also be solved by partial or total distribution of an
automaton representing the global property to all or part
of the component implementation [19]; this ensures that all
components synchronize their actions via the global automa-
ton. This comes at the cost of increasing the complexity of
the individual components considerably.

4. CHALLENGE 2: COMPLETENESS

In formal verification, we prove that a system satisfies its
specification. If the system is the composition of a set of
components S = {C), | p € P} and the specification is given
as an MSC M, verifying S = M corresponds to checking
the language inclusion

N LG € LA

pPEP

where L(C}) is the language accepted by the component
implementing process p and A is the global automaton as-
sociated with M.

Analysis techniques for this problem are computationally
expensive; the complexity of model checking [9], for instance,
is exponential in n. It has therefore long been recognized
that verification must be based on the decomposition of the
system into its components.

We now discuss a decompositional proof rule for MSCs.
Following the assumption-commitment paradigm, such a
rule supplies two automata for each component: the as-
sumption on the component’s environment, represented by

37

l MmMSEMR,
- 1 ack M - 1 - 1 ackM
msggng aCkRM msggng msggng
Qomsyl @) Qo
MmMSgMR, msgVR| MSEMR msgy[R
T®3 mSgS\ [C) T®3>a‘3kMS
ackRM aCkRM ackRM ackRM
B
ackyrg ackg) ackyig| ackyg msgy[R
k
(a) (b) (c)
Figure 5: (a) environment-safety automaton, (b)

environment-liveness automaton, (c¢) environment
automaton for the “Medium” process from Figure 1.

an environment automaton &,, and the commitment, repre-
sented by the associated local automaton from the previous
section. To prove S = M for a system S = {C}, | p € P}
and an MSC M with global automaton A we find a second
MSC M’ that has the decomposition property. Let A’ be
the global automaton associated with M’, and A, and &,
the local automata and environment automata, respectively,
for processes p € P. The following rule reduces the global
property to local proof obligations for each component:

DECOMPOSITIONAL PROOF RULE

if (1) forallpe P, L(&)NL(C,) C L(A})

and (2) L(A') C LA

then ﬂ L(Cp) C LA
pEP

Since the component can rely on the environment to co-
operate, we can exclude behaviors from the environment
automaton in which the environment either illegaly sends
a message (safety violation) or in which the component is
kept waiting for the next message infinitely (liveness viola-
tion). We construct two automata, the environment-safety
automaton S that recognizes all behaviors where the envi-
ronment violates safety, and the environment-liveness au-
tomaton L, that recognizes all behaviors where the envi-
ronment violates liveness. Behaviors accepted by either au-
tomaton need not be considered in the verification of the
component.

Safety violations can be recognized by considering finite
prefixes of input sequences. Let A = (N,X,I,T,F) be the
global automaton associated with an MSC M. The set of
all finite prefixes of sequences in L(.A), the prefiz language
of M, is accepted by the automaton (N, X, I, T, T). Because
of the trivial acceptance condition it is possible to construct
a deterministic Bichi automaton P4 that accepts the prefix
language (cf. [36]).

Gary T Leavens
37

DEFINITION 13 (ENVIRONMENT-SAFETY). Let the au-
tomaton Pa = (N, 3,1, T,F) be a deterministic Bichi au-
tomaton that accepts the prefiz language of an MSC. The
environment-safety automaton for process p is the automa-
ton Sp = (N', S, I, T, F') with

e NN=N U {Q}

e T"=T U {(n,s,Q) | se M-S, and
P €N . (n,s,n)eT}
U{(2,5,9) | s €}

o F'={(Q,s5,Q) | se X}

Figure 5a shows the environment-safety automaton for the
“Medium” process from the communication protocol exam-
ple. Note that the accepting paths stay in node 2; a tran-
sition to £ occurs whenever the environment illegally sends
a message.

Figure 5b shows the environment-liveness automaton for
the “Medium” process. The accepting paths stay in nodes
1 and 3: in node 1, the “Medium” process can count on
the “Sender” process to eventually send a message; in node
3, the “Medium” process awaits the acknowledgement from
the “Receiver” process.

DEFINITION 14 (ENVIRONMENT-LIVENESS). Let the au-
tomaton Pa = (N, 3,1, T,F) be a deterministic Bichi au-
tomaton that accepts the prefiz language of an MSC. The
environment-liveness automaton for process p is the automa-
ton L, = (N, %, I,T, F') with

F = {(n,m,n)| I €N,s€S,. (nsn)eET and
In' e Nyse (M —S,) . (n,s,n') €T}

Finally, the environment automaton &, contains all be-
haviors in which the environment commits neither a safety
nor a liveness violation. In the example, this combination
results in the environment automaton shown in Figure 5c.

DEFINITION 15 (ENVIRONMENT AUTOMATON). Let
Sp be the enuvironment-safety automaton and L, the
environment-liveness automaton for a process p. The
environment automaton &£, accepts the language

L(gp) = L(Sp) U L(['p)

We can now analyze the completeness of our rule. The
decompositional proof rule is complete if for any system S
and MSC M with S | M, there is an MSC M’ such that
the conditions of the rule hold. So far, we have made no
assumptions about the components allowed in the system
composition. In this generality, the decompositional proof
rule is clearly incomplete.

In Figure 6, the specification is satisfied if the two
processes “A” and “B” exchange exactly one message.
Now consider the following implementation: component
“A” chooses at each point nondeterministically whether
or not to send its message to “B” (unless it receives a
message from “B” first). “B,” on the other hand, applies
a timeout-mechanism that guarantees that eventually a
message is sent. There is no MSC M’ such that the
conditions of the decompositional proof rule hold: none of
the two alternatives in Figure 6 can be removed since either
message may OCCur.

38

msc Incompleteness
A B
[] []
|alt tickap
tickg A
]]

Figure 6: Incompleteness example.

The incompleteness of the proof rule stems from the dif-
ference in expressiveness of the MSCs we have considered so
far, and the components implementing individual processes.
This leaves us with two options for achieving completeness:
one is to restrict our attention to a smaller class of systems,
the other is to add to the expressiveness of MSCs.

Examples for restrictions are reqularity: the language ac-
cepted by each component is w-regular, reactivity: every
component exchanges infinitely many messages with its en-
vironment, and I/O directedness: a component has control
only over its output messages. If such restrictions are inad-
equate, it is certainly possible to make MSCs more expres-
sive, for example with an explicit assignment of progress
responsibilities: the property in Figure 6 could be proven
for the described implementation by indicating in Figure 6
that process “B” is responsible for the progress beyond the
interprocess edge (resulting in an appropriately modified en-
vironment automaton for process “A”).

In practice, components often accept a mnon-regular
language. Suggestions in the literature to extend MSCs to
non-regular languages include extensions with data states
[6, 22], as well as performance and real-time constraints
(cf. [16, 17, 31]). However, any extension to the MSC’s
expressiveness comes at the price of increased complexity:
many extended MSCs are undecidable. Care is also re-
quired to avoid syntactic clutter and to maintain the MSCs’
intuitive appearance.

Related work. Decompositional proofs have been stud-
ied for a long time, starting with the rely-guarantee formal-
ism [21] and proofs for networks of processes [27]. Since
then, many assumption-commitment rules have been pro-
posed, see [12] for an overview and [30] for a discussion of
their completeness. Our decomposition of MSC properties
into an assumption-commitment specification for individual
components is similar to the one in [7]; the semantic frame-
work used there includes the reactivity and I/O directed-
ness requirements mentioned above. We are not aware of
any work that formally analyzes the completeness of MSC
languages. A closely related topic, however, is the “reverse
engineering” of MSCs from systems; this is studied in [28].

Gary T Leavens
38

S. CHALLENGE 3: COMPOSITIONALITY

In the preceding sections we have addressed the proper-
ties expressed by individual MSCs with respect to a cer-
tain system under consideration. Now we turn our atten-
tion to the composition of specifications from several, pos-
sibly non-orthogonal MSCs. Intuitively, two MSCs are non-
orthogonal, if one contains a segment of an interaction pat-
tern depicted by the other. We deal with this problem from
two perspectives. First, we study the composition of “off-
the-shelf” components specifically in the context of verifica-
tion; here, the basic problem is to relate the already fixed
interface specifications of already existing components. Sec-
ond, we consider MSC composition in the more general con-
text of scenario specifications.

In component-oriented system development, the different
parts of a system are designed independently of each other;
components may be retrieved from a database that was put
together long before the system’s conception. It is therefore
unrealistic to expect that the MSCs documenting the differ-
ent components will agree, and we need a process to resolve
any differences.

In our communication protocol example, assume the
“Sender” component is described by the simple MSC from
Figure 1, and the “Medium” component has the richer func-
tionality depicted in Figure 2. Which MSC describes the
embedding of the composition of the two components in the
system? Or should this combination of components be re-
jected altogether?

In assumption-commitment reasoning, the environment of
a component is expected to show at most the behavior al-
lowed by the environment assumption (cf. [12]). Hence, the
combination of “Sender” and “Medium” component in our
communication protocol example would be rejected, since
the “Medium” component may send a “fail” message which
is not allowed in the MSC of the “Sender” component. Se-
mantically, this analysis corresponds to a pessimistic view
of the environment [11]: The combination of two compo-
nents is rejected because an environment exists that would
violate the specification of one of the components. In this
example, there is an implementation of the (so far not an-
alyzed) “Receiver” process that corresponds to the MSC of
the “Medium” component, but that would cause a violation
of the MSC of the “Sender” component. A more liberal op-
timistic view allows the combination of two components as
long as an implementation for the remaining environment
exists that would allow all specifications to be satisfied.

The optimistic point of view can be implemented in a pro-
cess for the composition of component MSCs. Given a sys-
tem S and an MSC M4 specifying the behavior of a subset
of the components A C S, and an MSC Mp specifying the
components B C S, we construct an MSC Maup specifying
AU B. In this chart only those behaviors of S — (AU B) are
allowed that do not cause the components in A to violate
environment assumptions of the components in B, or, vice
versa, cause the components in B to violate environment
assumptions of components in A.

There are automata-based solutions for optimistic com-
position (cf. [11]). It would be desirable to have purely syn-
tactic combination operations for MSCs that implement this
semantic construction and combinations for more expressive
MSC languages. This would constitute a first step towards
a thorough, seamless usage of MSCs as a specification and
verification aid in the context of component composition.

39

We now turn to questions of MSC composition in a more
general setting including analysis and design in addition to
verification. As we have argued in the preceding sections we
need a very strict MSC interpretation for promising MSC
application in the verification task. The well-established
usage of MSCs for capturing scenarios, on the other hand,
is an example of a very liberal MSC interpretation. A
scenario captures one possible segment of an overall system
execution, projected onto the components referenced in
the MSC. Because scenarios describe usually very specific
instances of behavior, a corresponding composition operator
must be very permissive; it cannot exclude alternative or
even interleaved behaviors prematurely. [22] contains a
composition operator, called “join”, which matches the
messages shared by the two operand MSCs; the resulting
MSC’s semantics contains only behaviors where this match
is possible. This form of composition explicitly supports
the combination of overlapping specifications; it is easily
transferred into the semantic framework we have established
in this paper.

Related work. The distinction between “optimistic”
and “pessimistic” compositionality has been made in the
verification literature, for example in lazy compositional ver-
ification [34] and, more recently, within the formalism of in-
terface automata [11]. In the MSC literature certain dialects
can be seen as closer to the pessimistic or optimistic point of
view. [22] discusses MSC interpretations in the range from
scenarios to exact component behavior; the latter excludes
behaviors other than the explicitly depicted ones.

6. CONCLUSIONS AND OUTLOOK

Message sequence charts have been used for quite some
time to informally describe the embedding of a component
in its environment. In this paper we have formulated crite-
ria the MSC language should satisfy so that the embedding
furthermore qualifies as a formal proof: if this is achieved,
then the correctness of the system is guaranteed once each
individual component is verified.

Certain compromises must be made when choosing an
MSC language. The simple MSCs described in Section 2
are attractive because their semantics is well-supported by
verification methods; however, they do not provide a com-
plete proof technique as discussed in Section 4. More ex-
pressive languages, such as the ones mentioned at the end
of Section 4, on the other hand, are hard to analyze or even
undecidable. For a given system and component model, a
good compromise would be to first select a language on the
basis of its completeness and then identify fragments accord-
ing to their expressiveness.

Using MSCs as a verification tool as suggested in this
paper should feel natural to designers familiar with MSC-
based scenario descriptions. There is also a close resem-
blance to verification tools such as generalized verification
diagrams [4, 5]: verification diagrams are similarly based
on w-automata, and they can also be used for component-
oriented proofs [14]. MSCs and verification diagrams work,
however, on different levels: verification diagrams are com-
plete proofs of a certain property. MSCs, on the other hand,
do not constitute complete proofs by themselves, since they
are constructed independently of implementation details.
Instead, they integrate the verification of individual prop-
erties in the correctness proof of the overall system.

Gary T Leavens
39

Compositionality may be the hardest remaining challenge
for a practical application of MSCs in component-based ver-
ification. In this paper we have addressed the composition of
MSC specifications referencing concrete components of the
system under consideration. Often, however, similar inter-
action patterns occur over and over again within the same
system among different sets of components, and also within
other systems. We can also identify and describe these in-
teraction patterns by means of MSCs: we only have to inter-
pret the axes of the MSCs more liberally. By parameterizing
MSCs with respect to their axis labelings, i.e., the compo-
nents they reference, we obtain a flexible language for such
recurring interaction patterns. Instead of a single concrete
component of a particular system under consideration, an
axis then represents the “role” of a participant in the in-
teraction pattern. The resulting MSCs describe interaction
patterns abstractly, without references to concrete partic-
ipants of a collaboration. We also speak of “connectors”,
when referencing abstract interaction protocols (cf. also [37,
33, 35, 7, 6]).

To use MSCs successfully in describing connectors (cf. [6,
7, 23, 15]) we need a way to relate abstract connectors and
concrete component interfaces. One way to do so is to in-
stantiate the roles in connectors by concrete components,
whose interfaces are also specified by MSCs; in a second
step we then have to match the behaviors allowed by the
connector with those of the instantiating components.

Exploiting the information contained in a connector dur-
ing component-oriented verification displays much potential
for reducing the overall verification complexity, and is a
promising area of future research.

Acknowledgments

The authors are grateful to Manfred Broy, César Sanchez,
Bernhard Schitz and Henny Sipma for helpful discussions
and comments on causality and MSCs in general.

7. REFERENCES

[1] R. Alur, K. Etessami, and M. Yannakakis. Inference of
Message Sequence Charts. In Proceedings of 22nd
International Conference on Software Engineering,
pages 304-313, 2000.

[2] R. Alur, K. Etessami, and M. Yannakakis.
Realizability and verification of MSC graphs. In 28th
International Colloquium on Automata, Languages
and Programming, LNCS. Springer-Verlag, 2001.

[3] R. Alur, G. J. Holzmann, and D. Peled. An analyzer
for message sequence charts. Software — Concepts
and Tools, 17:70 — 77, 1996.

[4] A. Browne, Z. Manna, and H. B. Sipma. Generalized
temporal verification diagrams. In 15th Conference on
the Foundations of Software Technology and
Theoretical Computer Science, volume 1026 of LNCS,
pages 484-498. Springer-Verlag, 1995.

[5] A. Browne, Z. Manna, and H. B. Sipma. Hierarchical
verification using verification diagrams. In 2"¢ Asian
Computing Science Conf., volume 1179 of LNCS,
pages 276-286. Springer-Verlag, Dec. 1996.

[6] M. Broy, C. Hofmann, I. Kriiger, and M. Schmidt. A
graphical description technique for communication in
software architectures. Technical Report TUM-19705,
Technische Universitdt Miinchen, 1997.

40

[7]

18]

M. Broy and I. Kriiger. Interaction Interfaces —
Towards a scientific foundation of a methodological
usage of Message Sequence Charts. In J. Staples,

M. G. Hinchey, and S. Liu, editors, Formal
Engineering Methods (ICFEM’98), pages 2-15. IEEE
Computer Society, 1998.

F. Buschmann, R. Meunier, H. Rohnert,

P. Sommerlad, and M. Stal. A System of Patterns.
Pattern-Oriented Software Architecture. Wiley, 1996.
E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. In FMOODS’99 IFIP
TC6/WG@G6.1 Third International Conference on
Formal Methods for Open Object-Based Distributed
Systems, 1999.

L. de Alfaro and T. Henzinger. Interface automata. In
Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering. ACM Press,
2001.

W.-P. de Roever, H. Langmaack, and A. Pnueli,
editors. Compositionality: The Significant Difference.
COMPOS’97, volume 1536 of LNCS. Springer-Verlag,
1998.

B. Finkbeiner. Language containment checking using
nondeterministic bdds. In Tools and Algorithms for
the Construction and Analysis of Systems, volume
2031 of LNCS. Springer-Verlag, 2001.

B. Finkbeiner, Z. Manna, and H. B. Sipma. Deductive
verification of modular systems. In de Roever et al.
[12], pages 239-275.

J. Grabowski, P. Graubmann, and E. Rudolph.
HyperMSCs with Connectors for Advanced Visual
System Modelling and Testing. In SDL Forum 2001,
pages 129-147. Springer, 2001.

R. Grosu, I. Kriiger, and T. Stauner. Hybrid sequence
charts. Technical Report TUM-19914, Technische
Univeritat Miinchen, 1999.

R. Grosu, I. Kriiger, and T. Stauner. Requirements
Specification of an Automotive System with Hybrid
Sequence Charts. In WORDS’99F, Fifth International
Workshop on Object-oriented Real-time Dependable
Systems. IEEE, 1999.

R. Hardin, Z. Har’El, and R. Kurshan. COSPAN. In
R. Alur and T. A. Henzinger, editors, Proc. 8" Intl.
Conference on Computer Aided Verification, volume
1102 of LNCS, pages 423-427. Springer-Verlag, July
1996.

D. Harel and H. Kugler. Synthesizing object systems
from Ics specifications, 1999. (submitted).

ITU-TS. Recommendation Z.120 : Message Sequence
Chart (MSC). Geneva, 1996.

C. Jones. Tentative steps toward a development
method for interfering programs. ACM TOPLAS,
5(4):596-619, 1983.

I. Kriiger. Distributed System Design with Message
Sequence Charts. PhD thesis, Technische Universitét
Miinchen, 2000.

I. Kriiger. Notational and Methodical Issues in
Forward Engineering with MSCs. In T. Systé, editor,
Proceedings of OOPSLA 2000 Workshop:

Gary T Leavens
40

[29]

Scenario-based round trip engineering. Tampere
University of Technology, Software Systems
Laboratory, Report 20, 2000.

I. Kriiger, R. Grosu, P. Scholz, and M. Broy. From
MSCs to Statecharts. In DIPES’98. Kluwer, 1999.

P. B. Ladkin and S. Leue. Interpreting Message Flow
Graphs. Formal Aspects of Computing, (5):473-509,
1995.

S. Leue. Methods and Semantics for
Telecommunications Systems Engineering. PhD thesis,
Universitat Bern, 1995.

J. Misra and K. M. Chandy. Proofs of networks of
processes. IEEE Transactions on Software
Engineering, SE-7(4):417-426, 1981.

A. Muscholl and D. Peled. From finite state
communication protocols to high level message
sequence charts. In 28th Int. Col. on Automata
Languages and Programming (ICALP’2001), volume
2076 of LNCS, pages 720-731. Springer-Verlag, 2001.
R. Nahm. Designing and documenting componentware
with message sequence charts. In T. Jell, editor,
Component-based Software Engineering, pages
111-116. Cambridge University Press, 1998.

41

[30]

K. S. Namjoshi and R. J. Trefler. On the completeness
of compositional reasoning. In 12th International
Conference on Computer Aided Verification, volume
1855 of LNCS, pages 139-153. Springer-Verlag, 2000.
Unified modeling language, version 1.1. Rational
Software Corporation, 1997.

B. Selic, G. Gullekson, and P. T. Ward. Real-Time
Object-Oriented Modeling. Wiley, 1994.

B. Selic and J. Rumbaugh. Using UML for modeling
complex real-time systems.
http://www.objectime.com/otl/technical, April
1998.

N. Shankar. Lazy compositional verification. In

de Roever et al. [12].

M. Shaw and D. Garlan. Software architectures.
perspectives on an emerging discipline, 1996.

W. Thomas. Automata on infinite objects. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B, pages 133-191. Elsevier Science
Publishers (North-Holland), 1990.

A. C. Wills and D. D’Souza. Objects, Components,
and Frameworks with UML— The Catalysis Approach.
Addison Wesley, 1998.

Gary T Leavens
41

Reasoning about Composition:
A Predicate Transformer Approach

[Position Paper]

Michel Charpentier

Department of Computer Science
University of New Hampshire

charpov@cs.unh.edu

ABSTRACT

As interest in components and composition-related methods
is growing rapidly, it is not always clear what the goals (and
the corresponding difficulties) actually are. If composition
is to become central in the future of software engineering,
we need to better identify the fundamental issues that are
related to it, before we attempt to solve them as they oc-
cur in object-oriented systems or in concurrent and reactive
systems. In this paper, we present our formulation of some
of the composition problems in a context of formal methods
and program specification and verification. This formaliza-
tion is based on predicate calculus and predicate transform-
ers and aims at remaining as general as possible. This way,
we hope to better understand some of the fundamental is-
sues of composition and component-based reasoning.

1. INTRODUCTION

Composition is receiving a lot of attention these days: Com-
ponents are everywhere and everything is (or ought to be)
“compositional”. What is meant by that, though, is far
from being clear, and there is a wide range of opinions
on what is still to be done. Some might argue that the
composition problem is now solved at a fundamental level
and that actual techniques and tools just need to be put
in place. At the other end of the spectrum, some might be-
lieve that composition, as we understand it today, cannot be
achieved in software engineering and that other approaches
must be sought. And, between these two extremes, are re-
search projects, mostly independent from one another, that
focus on specific instances of this composition problem, be
it a type system in an object-oriented context or a temporal
logic for reactive systems.

A possible reason for this apparent contradiction and con-

fusion is that composition is a broad concept and that the
composition problem might not be unique. There are many

42

issues related to composition, some are easier to tackle than
others, and many must be dealt with before the problem
can be considered solved (or unsolvable). In this paper, we
advocate the idea that an important step today is to iden-
tify those composition problems and to understand how they
relate to each other.

We restrict our attention to composition in a formal methods
context. Other contexts, such as for instance programming
languages, lead to other composition problems and all have
to be solved in order to make composition viable as a whole.
Furthermore, we choose a static point of view: we reason
about properties of systems and components whereas a dy-
namic point of view would focus on the process of building
systems from components.

These choices, however, leave us in a broad background
where fundamental questions related to many forms of com-
position can be explored: What are components? How are
they composed? How are they described and specified?
What do we expect from such specifications? What is the re-
lationship between systems and components specifications?
What does it mean to be “compositional”? How can we ob-
tain compositional specifications? Can composition lead to
simpler correctness proofs? How does composition relate to
reuse? How does it relate to abstraction?

Our current effort focuses on addressing these questions with-
out specializing the chosen context any further. This way,
we hope to better understand what problems are common to
different forms of composition and what problems are spe-
cific to families of components or laws of composition. As a
guideline for this general exploration, we also consider the
special case of concurrent composition of processes specified
in temporal logic. This familiar but complex background, in
which the composition problem is far from being solved, is
both a source of inspiration and a test-bench for our abstract
study of composition. Our approach to studying composi-
tion as well as some of our results are informally introduced
in the remaining of this paper. Technical details can be
found in cited references.

Gary T Leavens
42

2. SPECIFICATIONS AND PROOFS
IN COMPOSITIONAL DESIGNS
2.1 Compositional Design versus
Compositional Verification

Composition has often been advocated as a necessary step
in the proof of large systems. While this is certainly true,
we do not want to restrict composition to that role.

For instance, it is possible to build a system from compo-
nents, generate correctness proof obligations from the com-
plete system, and then apply composition at the proof level
(split the global proof obligation into several independent
proofs). This approach is suggested, for instance, in [24].
Compositional model-checking also follows this philosophy
to some degree.

While the previous technique is relatively simple and allows
verification techniques to handle large systems, we have in
mind a more ambitious role for composition, namely the
“open system” approach. In this approach, we want to ver-
ify the correctness of components in isolation, before they
become part of any system. In the previous case, the com-
plete knowledge of the system can be used to verify one
component. For open systems, this is not true anymore. All
that is known are specific assumptions on possible environ-
ments, which are part of a component specification. This
tends to make proofs harder since these assumptions de-
scribe a set of possible environments instead of a completely
specified context, and they have to be abstract and generic
enough to allow a large number of environments to use the
component.

However, the open system approach also has benefits that
make its study worthwhile. Firstly, since components are
already proved correct with respect to their specifications,
the correctness proof of a complete system can rely on these
specifications instead of the components’ implementations.
This allows designers not to take into account the many
details of the internal structure of each component. Com-
positionality of designs breaks down when reasoning about
a system requires managing too many details from each part
of that system.

Secondly, and this is probably the main benefit, the open
system approach allows designers to embed parts of a cor-
rectness proof into components, making these parts available
each time a component is used to build a system. Indeed,
when a component is proved correct with respect to its spec-
ification, relevant facts about this component are extracted
from the details of its implementation and become part of
the component specification. When this component is com-
posed with a larger system, these facts can be used in the
system correctness proof without the need for proving them
again. Each time a component is reused, a (possibly diffi-
cult) proof is reused too, as well as any other correctness
argument available such as tests or behavior in other sys-
tems.

2.2 Abstract Specifications

In order to be able to achieve such reuse, we need specifica-
tions to remain abstract enough to describe what is required
from a component, all that is required and only what is re-

43

quired. When designing a system and looking for a suitable
component, the specification used by the designer cannot in-
clude too many details about this component, because any
component with the right functionalities should be usable,
whatever its implementation details are. Such a specifica-
tion must also be able to express that some aspects are irrel-
evant in order to avoid an overspecification of requirements.
If requirements are overspecified, then designers might end
up not finding any suitable component while actually some
existing component would fit their needs perfectly.

A second reason why we want specifications to be abstract
is to keep composition worthwhile and cost effective in spite
of the natural overhead it generates. A key idea of com-
ponent technology is that the same component can be used
in many systems, and thus the effort that goes into specify-
ing, proving and implementing components can be exploited
many times. As explained before, each time a component is
reused, a proof, the correctness proof of that component, is
reused too. If a component specification contains abstract,
relevant, hard-to-prove facts about the component, a possi-
bly difficult and large proof is reused. However, if a compo-
nent specification is too close to its implementation and not
abstract enough, very little proof can be reused. Therefore,
greater productivity is achieved by using components that
embody substantial effort by containing proofs of abstract
specifications.

This situation is illustrated in figure 1. Proofs labeled with
“T” are those component-correctness proofs that are left un-
changed through composition and that can be reused in the
design of several systems. Proofs labeled with ‘C’ are proofs
of composition, i.e., proofs of system properties from com-
ponent properties. The level of abstraction of component
specifications clearly influences the amount of effort that has
to be put in T-proofs and in C-proofs. A good framework
for composition should allow us to put most of the effort in
T-proofs and keep C-proofs as simple as possible. Even if
the sum of C and T-proofs is larger and more complex than
a direct (noncompositional) proof for the same system, com-
position is still worthwhile because existing T-proofs can be
reused.

Part of the problem is that specifications that are too ab-
stract do not contain enough information to be composed.
Therefore, the right balance between abstraction and ability
to be composed must be found.

3. SPECIFICITY OF OUR RESEARCH
3.1 Shortcomings of Current Approaches

When deterministic components are composed sequentially,
the problem reduces to composition of functions and remains
tractable. Developers use libraries of procedures every day
and rely on their specifications without having to consider
implementation details.

However, effective compositional design often involves non-
deterministic components and concurrent composition. For
instance, the different parts of a reactive system cannot be
specified in terms of precondition and postcondition because
of their possibly infinite behavior, which leads to tremendous
difficulties in terms of composition.

Gary T Leavens
43

[Global System J

Program Text Program Text
2

{ Component J{ Component J

{ Component J { Component J

Program

@ Proof of composition

@ Proof of component correctness

Figure 1: A compositional design

Composition of such systems, which interact at the level of
their behavior, not at the level of their initial/final state, has
been extensively studied. Very schematically, two distinct
families emerge.

On the one hand, process algebras, such as CSP, CCS or
m-calculus to name a few, integrate composition as a cen-
tral part of their design. Systems are compositions of pro-
cesses and processes compose quite naturally. The resulting
formally well-defined notation, however, often looks like a
programming language more than a specification language.
In this context, it is quite difficult to express abstract prop-
erties on the expected behavior of these components and
systems. As a consequence, it is difficult to obtain reusable
generic specifications, as well as specifications easily related
to informal requirements.

Temporal logics, on the other hand, such as LTL, CTL,
TLA, or UNITY, are well-suited to express nonoperational,
abstract specifications. They provide us with specification
languages that are closer to informal descriptions, which
makes specifications more easily readable and checkable with
respect to informal requirements. However, the starting
point of these notations is the specification of a system, glob-
ally. Composition is viewed as an additional issue, which re-
quires a specific treatment. Work has been done to manage
composition issues with specific logics [25, 19, 18, 2, 20, 23,
34, 21], but little work has been done to study composition
in itself, independently of the underlying logic [1, 4, 3].

3.2 Composition in the Abstract

The specificity of our approach is to study composition in-
dependently from what components and the laws of com-
position actually are. We are not focusing on a specific
domain, nor do we want to design specification languages

44

tailored to certain forms of composition. Our view is one
of a component-based software industry, where composition
is involved in almost every design. We want to deal with
this composition, whether it works well or not, whether it
is easy or not. This departs from the works on temporal
logic cited above, where usually the whole language is made
“composable” by restricting up front the type of interaction
under consideration. For instance, composition works fine
in TLA (it reduces to conjunction) [2], but component as-
sumptions are made at the transition level and cannot be at
the computation level, as in the case of liveness assumptions
(see example in section 4.4).

The context of our work is therefore independent of the na-
ture of systems. It is not a context of “variables”, “states”,
“computations”, “interleaving”, “safety” or “liveness”, but
rather one of “systems”, “components”, “specifications” and
“composition laws”. No specific logic or process model is
used and few hypotheses are made on composition laws.
This way, it is hoped that we can understand aspects that
are common to many forms of composition and many types
of systems. Later, that knowledge can be applied to the
concurrent composition of reactive systems, for instance.

This approach inherits from both the process algebra and
the temporal logic families mentioned above. On the one
hand, we consider that systems are specified logically (with-
out choosing a specific logic), which provides us with a rich
specification language and allows us potentially to apply re-
sults to temporal logics for reactive systems. On the other
hand, we define an algebra of composition with the goal of
obtaining a calculus that would allow us to calculate (in-
stead of guess and then prove) properties of systems and
components. In this respect, our approach relates to pro-
cess calculus based approaches.

Gary T Leavens
44

4. CURRENT WORK
4.1 Existential and Universal Specifications

The starting point of our exploration is the definition of
a simple model of components, systems and specifications.
Because of our concern with generality, we use a monoid-
like structure of components and specifications are boolean
functions (predicates) on components and systems. In other
words, we assume that components are composed with a sin-
gle law of composition for which we assume associativity but
no other property such as symmetry or idempotency. As a
consequence, the model can be instantiated with transfor-
mational programs (specified in terms of preconditions and
postconditions and composed sequentially) or with reactive
processes (specified with temporal logics and composed con-
currently), among other things.

In this context, we first focused on two particular families
of specifications called ezistential and universal [7, 14]. We
say that a specification is existential exactly when, for all
systems, the specification holds in a system if it holds in at
least one component of that system. Similarly, a specifica-
tion is universal if it holds in a system when it holds in all
components of that system. FExistential and universal are
characteristics of specifications, independent of a particular
set of components. Some specifications are existential, some
are universal and, of course, some are neither. However,
when existential and universal specifications are used, they
naturally lead to simple proofs of composition (C-proofs),
properties being inherited by a system from its components.

4.2 A*guarantees” Operator for

Assumption-Commitment Specifications
If we only allow existential and universal specifications to
appear in component descriptions, this is a restriction on
how components can be described. This is the price to pay
for simple proofs of composition. However, we have found
these two classes to be surprisingly rich. For instance, the
work on temporal logics in [19, 18, 2, 20, 34, 21] relies almost
exclusively on existential-like composition.

One reason why existential specifications appear to be so
convenient is the existence of the guarantees operator de-
fined in [7]. The guarantees operator can be used to ex-
press existential assumption-commitment specifications. Its
main originality is that it is not defined in terms of com-
ponent environments, as assumption-commitment specifica-
tions usually are (components are making assumptions on
their possible environments). In the case of guarantees, the
commitment part of the specification as well as the assump-
tion part apply to a complete system (environment + com-
ponent): X guarantees Y holds in a component F' if and
only if Y holds in GoFoH (where o denotes the law of com-
position under consideration) when X holds in GoFoH, for
all systems G and H that can be composed with F. The
fundamental property of guarantees is that X guarantees Y
is existential regardless of what the specifications X and Y
are. Therefore, proofs of composition are simplified when
components are specified in terms of guarantees.

4.3 Predicate Transformers for Composition

By studying the guarantees operator carefully, we made
the observation that it is merely the application to logi-

45

cal implication of a more general operator which we called
WE [6]. This allows a separation of concerns: WE actually
represents composition while logical implication represents
the assumption-commitment mechanism. WE is a predicate
transformer, in other words, a function from specifications
to specifications. Formally, for a specification X, WE.X is
defined as the weakest existential specification stronger than
X (which exists regardless of X).

It can be proved that WE. X characterizes those components
F such that specification X holds in any system that con-
tains F' as a component [14]. As a consequence, the specifica-
tion X guarantees Y is actually equivalent to WE.(X = Y).
In other words, guarantees is the weakest (the most abstract)
strengthening of logical implication that makes it compos-
able (for the existential form of composition). This, in some
sense, is a theoretical argument to claim that guarantees can
provide us with abstract, reusable specifications.

WE is the first of a series of predicate transformers that we
have started to study. Indeed, we can define SE.X as the
strongest existential property weaker than X. The corre-
sponding theorem states that SE.X characterizes those sys-
tems that contain at least one component that satisfies X.
In other words, when a component that satisfies X is used
in a system, this system satisfies SE.X. In the best case
(when X is an existential specification), the system satisfies
X (SE.X is equivalent to X); in the worst case (where all
of X is lost through composition), SE.X reduces to true. In
some sense, SE. X represents the part of specification X that
composes (existentially). Equivalently, SE.X characterizes
those systems that are (or can be) built using a component
that satisfies specification X [15].

Things are different in the case of universal composition. A
transformer U can be defined (as the strongest universal
specification weaker than a given specification), but we are
still looking for a suitable WU. Such a transformer would
be useful to characterize what has to be proved on a com-
ponent instead of a (nonuniversal) specification X in order
to inherit the simplicity of universal composition. However,
it cannot be defined as the weakest universal specification
stronger than a given specification because such a weakest
element does not always exist, depending on the nonuni-
versal specification that is considered. We have started to
study several possible candidates for a WU operator but we
do not have a strong argument in favor of one of them yet.
As a guideline for that search of WU, we have also studied
the question of strengthening nonuniversal properties in a
more restricted context, namely a linear temporal logic (see
section 4.4).

Furthermore, by describing composition in terms of pred-
icate transformers, for which a large amount of literature
exists [22], we are able to reuse classic techniques such as
conjugates. Every predicate transformer 7 has a unique
conjugate 7" such that 7*.X = =7 .(—=X). The transform-
ers we have defined for existential and universal composition
also have conjugates, namely WE*, SE* and SU*. Tt should
be noted that, while WE, SE and SU describe composition
from components to systems (what has to be proved on
components, what can be deduced on systems), WE*, SE*
and U™ describe composition from systems to components

Gary T Leavens
45

(what should be proved on systems, what can be deduced
on components). For instance, WE*. X is true of any compo-
nent that is used to build a system that satisfies specification
X. This form of reasoning, from systems to components, is
sometimes neglected. We believe it to be extremely impor-
tant because it is the kind of reasoning that is involved when
system designers are looking for components. A designer
who is building a system to satisfy specification X knows
that only components that satisfy WE*.X can be used and
that other components need not be considered. We find
conjugates to be a powerful and elegant way to switch from
bottom-up to top-down views on composition [13]. In par-
ticular, many properties of predicate transformers, such as
junctivity and monotonicity, are inherited from transformers
to conjugates. This allows us to avoid duplicating proofs.

4.4 Application to UNITY logic

In parallel with our work on predicate transformers and com-
position, we have started to apply our ideas to specifications
and proofs of concurrent and distributed systems. Theoret-
ical investigation is one way to claim the usefulness of op-
erators (for instance, by proving that they are the weakest
solution to some set of equations). Practical attempts at
writing specifications and proofs based on these operators
are another.

Two of these examples were fully developed and published.
One focuses on shared memory systems [11], while the other
deals with distributed systems [12, 5].

In the first example, universal specifications are used instead
of guarantees, which does not seem to fit this example well
enough. In this case, the correctness argument relies on the
fact that some dependency graph among processes remains
acyclic. Since each process only modifies the dependency
graph locally (by interacting with its neighbors), no single
process can guarantee that the graph remains acyclic, using
an existential property. However, there can be a property
that states that no process will ever create a cycle in the
graph. Such a property can be formulated in a universal
way so that, when it is satisfied by all processes, the global
system also satisfies it and cycles cannot be introduced in
the graph.

This raises a number of interesting questions. In this ex-
ample, it appears that universal specifications are required
to describe the behavior of shared variables (variables that
are written by several processes). However, there are other
examples with shared variables that can successfully be spec-
ified in terms of guarantees. There are also systems without
shared variables (distributed systems) but where a shared
virtual data structure (such as a graph among processes)
is used in the correctness proof. Should such a system be
specified in terms of guarantees (it usually can, from the
absence of shared variables) or in terms of universal specifi-
cations of the shared virtual data structure? And if guaran-
tees is used, should the correctness proof rely directly on it
or can we obtain a simpler proof by using an intermediate
(universal) specification that is deduced from the original
(existential) specification? These are the kind of fundamen-
tal questions we plan to explore through the development of
other examples.

46

Using universal specifications gives rise to other interesting
issues. For instance, the UNITY logic (which was used in our
examples) exists in two forms: a weak form and a strong
form [31, 28, 27]. The UNITY operator invariant leads to
universal specifications in its strong form but not in its weak
form. For the sake of simplicity, we used the strong form of
UNITY logic in our example. However, this is not realis-
tic from a practical point of view (the strong form of the
logic is much too strong for a specification) and we have to
find ways of strengthening the weak form to make it univer-
sal. We have defined such a strengthening based on WE [9]
(the resulting universal form of the weak invariant resem-
bles a similar operator from [34]), but we cannot tell if this
is an optimal solution. In other words, we do not know if
the resulting operator is the weakest universal specification
stronger than the weak invariant (we do not even know if
such a weakest solution exists). Besides its practical inter-
est, this question also relates to the problem of finding a
suitable transformer WU, as explained earlier in section 4.3.

Our second example involves distributed systems. It makes
use of guarantees, mixed with techniques for abstract com-
munication description that were previously developed [16,
26, 8, 33, 17]. This abstract description of communication is
made possible by the ability of guarantees to involve liveness
specifications in its assumption part. Basically, a network
component guarantees that the sequence of received mes-
sages is always a prefix of the sequence of sent messages
(safety) and that any message that is sent is eventually re-
ceived (liveness).

There are other places in this example where our use of
liveness specifications combined with guarantees leads to
simpler proofs of composition by embedding larger proofs
in components verification (see the discussion in 2.2). For
instance, this example involves a resource allocator compo-
nent that satisfies a property of the form: clients return
resources in finite time (and other conditions) guarantees
any request for resources is eventually satisfied. The proof
of composition remains simple because the corresponding
client component property that states that clients actually
return resources in finite time can be plugged (through net-
work specifications) into the left-hand side of this guarantees
property to deduce that all requests are eventually granted.

If liveness properties cannot be used in the assumption part
of a composition operator — (as in [1, 2, 18, 19, 20, 21]),
the resource allocator specification has to be of the form:
enough resources are available to satisfy the first pending
request — the first pending request is eventually granted. In
this case, the fact that clients return resources in finite time
cannot be used directly as before. Instead, a first proof of
composition is required to show that enough resources will
eventually be available to satisfy the first pending request
and then a second proof to show that other requests are
eventually satisfied. When guarantees is used, these two
proofs (by induction) are inside the correctness proof of the
allocator component and can be reused when the allocator
component is reused. In the other case, they are in the
proof of composition and have to be redone every time a
new system is built from these components.

Gary T Leavens
46

5. OUTLINE OF FUTURE RESEARCH

The work described above represents a first step towards our
exploration of composition issues in system design. Start-
ing with guarantees as a middle point, the research is now
developing both upstream (towards predicate transformers
and other fundamental composition-related operators) and
downstream (towards practical application to concurrent sys-
tems).

One of our goals is the definition of a formal calculus in
which specifications can be transformed to fit specific com-
position constraints. In other words, starting from require-
ments that are not compositional, we want to calculate a
suitable compositional specification. In the case of existen-
tial composition, for example, it is not enough to know that
WE. X is what needs to be proved on a component to ensure
that systems which use that component will satisfy speci-
fication X. We need to know how to prove WE.X given a
component description.

This can be achieved at different levels. At the most abstract
level, we can exhibit theorems about WE that allow us to re-
duce the calculation of WE.X using known WE.Y', where Y
is a part of X (for instance, using existential Y specifica-
tions). When this is possible, we can calculate WE.X inside
the logic in which X is expressed, which gives us the corre-
sponding component specification. We were able to achieve
such calculations on toy examples [14], but we need more
theorems and rules related to WE and our other transform-
ers to be able to conduct such calculations on examples from
more interesting domains. One difficulty when seeking such
properties of the transformers is to free ourselves from im-
plicit assumptions regarding the law of composition. For
instance, we sometimes use concurrent composition of pro-
cesses as a guideline to find general rules about the trans-
formers, but we must be careful not to use an hypothesis
such as symmetry or idempotency which we decided not to
include systematically in our model.

Another way to deal with the transformers is to first in-
stantiate our framework with a specification language and
then to derive rules about WE.X, when X is expressed in
the chosen logical language (instead of using general theo-
rems about WE). We have started this process with UNITY
logic in order to build the necessary correctness proofs in
our examples with concurrent and distributed systems [9].
Furthermore, we also need to apply our approach to other
frameworks for the specification and verification of concur-
rent systems. This effort has already started, for instance
with CTL [32], but we want to consider other frameworks,
such as TLA or I/O-automata.

Recently, we have started to generalize our approach to sys-
tems in which several laws of composition are used at the
same time. An example of such a system is a software sys-
tem in which components are composed sequentially and in
parallel. According to preliminary results, it seems that our
approach can still be applied. In other words, we are still
able to define weakest and strongest transformers that repre-
sent specific views on composition (independently, this time,
from existential and universal specifications). Furthermore,
the resulting predicate transformers bear strong similarities
with Dijkstra’s wip and sp transformers for program seman-

47

tics, from which we can draw new inspirations [10]. This
new set of transformers has now to be explored carefully.
Especially, relationships between transformer properties and
assumptions on the different laws of composition have to be
found.

6. SUMMARY

The lack of composition-based methods is a major factor
in the limited use of formal methods in actual designs. We
believe our project adopts a novel view on an old and im-
portant problem. Most work on composition has focused
on a specific form of composition (sequential, parallel with
shared variables, parallel with message passing, etc.) and a
specific type of component (namely, programs, either with
states or with so-called “open system computations”). By
choosing a much more general view, we hope to understand
fundamental aspects of composition that are independent
from the types of components and the way they interact.

Our ultimate goal is to build a calculus for composition. It
would be a formal framework that can be instantiated with
many form of compositions and many types of systems and
components. We hope this framework will include generic
rules and theorems about composition and logical specifi-
cations. The search for such fundamental rules, common
to any kind of composition, is an exciting problem. Then,
each instantiation enriches the framework with additional
rules that are specific to this instantiation, making it more
complete and more practically usable.

Besides this theoretical part of the project, we are experi-
menting with several notations for the specification and ver-
ification of concurrent systems to see how they can be ex-
tended through our approach into compositional notations.
We hope, by modifying and extending existing notations,
to develop an interesting framework to reason about con-
current composition of reactive systems. Another aspect of
the problem is related to mechanization. We are investigat-
ing the question of the mechanization of guarantees through
a collaboration with Larry Paulson from the University of
Cambridge. Larry is currently working on a mechanization
of UNITY [29] extended with guarantees [30] in the higher-
order generic theorem prover Isabelle. His work is guided by
his attempts at mechanizing hand proofs from our example
involving distributed systems.

We are convinced that the future of software engineering is
tied to composition. Component-based designs and reuse of
generic components will be at the core of future software
systems. Composition involves a number of practical issues,
but also raises fundamental questions regarding component
specifications and compositional reasoning. We need to im-
prove our understanding of composition if we want to be
able to devise the tools and principles that will allow us to
use components reliably and efficiently in software engineer-
ing. Our project has started an exploration of some of the
fundamental questions inherent in compositional design.

Gary T Leavens
47

7.
1]

[5]

[10]

[11]

[12]

REFERENCES

Martin Abadi and Leslie Lamport. Composing
specifications. ACM Transactions on Programming
Languages and Systems, 15(1):73-132, January 1993.

Martin Abadi and Leslie Lamport. Conjoining
specifications. ACM Transactions on Programming
Languages and Systems, 17(3):507-534, May 1995.

Martin Abadi and Stephan Merz. An abstract account
of composition. In Jivri Wiedermann and Petr Hajek,
editors, Mathematical Foundations of Computer
Science, volume 969 of Lecture Notes in Computer
Science, pages 499-508. Springer-Verlag, September
1995.

Martin Abadi and Gordon Plotkin. A logical view of
composition. Theoretical Computer Science,
114(1):3-30, June 1993

K. Mani Chandy and Michel Charpentier. An
experiment in program composition and proof. Formal
Methods in System Design, April 1999. Accepted for
publication.

K. Mani Chandy and Michel Charpentier. Predicate
transformers for composition. In Jim Davies, Bill
Roscoe, and Jim Woodcock, editors, Millennial
Perspectives in Computer Science: proccedings of the
1999 Ozxford-Microsoft symposium in honour of Sir
Tony Hoare, Cornerstones of Computing, pages 81-90.
Palgrave, 2000.

K. Mani Chandy and Beverly Sanders. Reasoning
about program composition.
http://www.cise.ufl.edu/~sanders/pubs/composition.ps.

Michel Charpentier. Assistance a la Répartition de
Systémes Réactifs. PhD thesis, Institut National
Polytechnique de Toulouse, France, November 1997.

Michel Charpentier. Making UNITY properties
compositional. Unpublished report, California
Institute of Technology, 1999.

Michel Charpentier. A theory of composition
motivated by wp. Submitted for publication, August
2001.

Michel Charpentier and K. Mani Chandy. Examples of
program composition illustrating the use of universal
properties. In J. Rolim, editor, International workshop
on Formal Methods for Parallel Programming: Theory
and Applications (FMPPTA’99), volume 1586 of
Lecture Notes in Computer Science, pages 1215-1227.
Springer-Verlag, April 1999.

Michel Charpentier and K. Mani Chandy. Towards a
compositional approach to the design and verification
of distributed systems. In J. Wing, J. Woodcock, and
J. Davies, editors, World Congress on Formal Methods
in the Development of Computing Systems (FM’99),
(Vol. I), volume 1708 of Lecture Notes in Computer
Science, pages 570-589. Springer-Verlag, September
1999.

48

[13] Michel Charpentier and K. Mani Chandy. Reasoning
about composition using property transformers and
their conjugates. In J. van Leeuwen, O. Watanabe,

M. Hagiya, P.D. Mosses, and T. Ito, editors,
Theoretical Computer Science: Ezxploring New
Frontiers of Theoretical Informatics (IFIP-TCS’2000),
volume 1872 of Lecture Notes in Computer Science,
pages 580-595. Springer-Verlag, August 2000.

Michel Charpentier and K. Mani Chandy. Theorems
about composition. In R. Backhouse and J. Nuno
Oliveira, editors, International Conference on
Mathematics of Program Construction (MPC’2000),
volume 1837 of Lecture Notes in Computer Science,
pages 167-186. Springer-Verlag, July 2000.

(14]

Michel Charpentier and K. Mani Chandy.
Specification transformers: A predicate transformer
approach to composition. Submitted for publication,
July 2001.

[16] Michel Charpentier, Mamoun Filali, Philippe Mauran,
Gérard Padiou, and Philippe Quéinnec. Abstracting
communication to reason about distributed
algorithms. In O. Babaoglu and K. Marzullo, editors,
Tenth International Workshop on Distributed
Algorithms (WDAG’96), volume 1151 of Lecture Notes
in Computer Science, pages 89—104. Springer-Verlag,
October 1996.

[17] Michel Charpentier, Mamoun Filali, Philippe Mauran,
Gérard Padiou, and Philippe Quéinnec. The
observation: an abstract communication mechanism.
Parallel Processing Letters, 9(3):437-450, September
1999.

[18] Pierre Collette. Design of Compositional Proof
Systems Based on Assumption-Commitment
Specifications. Application to UNITY. Doctoral thesis,
Faculté des Sciences Appliquées, Université
Catholique de Louvain, June 1994.

[19] Pierre Collette. An explanatory presentation of
composition rules for assumption-commitment
specifications. Information Processing Letters,
50:31-35, 1994.

[20] Pierre Collette and Edgar Knapp. Logical foundations
for compositional verification and development of
concurrent programs in UNITY. In International
Conference on Algebraic Methodology and Software
Technology, volume 936 of Lecture Notes in Computer
Science, pages 353-367. Springer-Verlag, 1995.

Pierre Collette and Edgar Knapp. A foundation for
modular reasoning about safety and progress
properties of state-based concurrent programes.
Theoretical Computer Science, 183:253-279, 1997.

Edsger W. Dijkstra and Carel S. Scholten. Predicate
calculus and program semantics. Texts and
monographs in computer science. Springer-Verlag,
1990.

[23] J.L. Fiadeiro and T. Maibaum. Verifying for reuse:
foundations of object-oriented system verification. In

Gary T Leavens
48

[24]

[25]

[26]

[34]

I. Makie C. Hankin and R. Nagarajan, editors, Theory
and Formal Methods, pages 235—257. World Scientific
Publishing Company, 1995.

Leslie Lamport. Composition: A way to make proofs
harder. In W.-P. de Roever, H. Langmaack, and

A. Pnueli, editors, Compositionality: The Significant
Difference (COMPOS’97), volume 1536 of Lecture
Notes in Computer Science, pages 402-423.
Springer-Verlag, September 1997.

Zohar Manna and Amir Pnueli. The Temporal Logic of
Reactive and Concurrent Systems: Specification.
Springer-Verlag, 1992.

R. Manohar and Paul Sivilotti. Composing processes
using modified rely-guarantee specifications. Technical
Report CS-TR-96-22, California Institute of
Technology, 1996.

Jayadev Misra. A logic for concurrent programming:
Progress. Journal of Computer and Software
Engineering, 3(2):273-300, 1995.

Jayadev Misra. A logic for concurrent programming;:
Safety. Journal of Computer and Software
Engineering, 3(2):239-272, 1995.

Lawrence C. Paulson. Mechanizing UNITY in Isabelle.
ACM Transactions on Computational Logic, 1(1), July
2000.

Lawrence C. Paulson. Mechanizing a theory of
program composition for UNITY. ACM Transactions
on Computational Logic, 2001. To appear.

Beverly A. Sanders. Eliminating the substitution
axiom from UNITY logic. Formal Aspects of
Computing, 3(2):189-205, April-June 1991.

Beverly A. Sanders and Hector Andrade. Model
checking for open systems. Submitted for publication,
2000.

Paolo A. G. Sivilotti. A Method for the Specification,
Composition, and Testing of Distributed Object
Systems. PhD thesis, California Institute of
Technology, 256-80 Caltech, Pasadena, California
91125, December 1997.

Rob T. Udink. Program Refinement in UNITY-like
Environments. PhD thesis, Utrecht University,
September 1995.

49

Gary T Leavens
49

Specification and Verification with References

Bruce W. Weide and Wayne D. Heym
Computer and Information Science
The Ohio State University
Columbus, OH 43210
+1-614-292-1517

{weide,heym}@cis.ohio-state.edu

ABSTRACT

Modern object-oriented programming languages demand that
component designers, specifiers, and clients deal with refer-
ences. This is true despite the fact that some programming
language and formal methods researchers have been announc-
ing for decades, in effect, that pointers/references are harmful
to the reasoning process. Their wise counsel to bury point-
ers/references as deeply as possible, or to eliminate them en-
tirely, hasn’t been heeded. What can be done to reconcile the
practical need to program in the languages provided to us by
the commercial powers-that-be, with the need to reason
soundly about the behavior of component-based software sys-
tems? By directly comparing specifications for value and ref-
erence types, it is possible to assess the impact of visible
pointers/references. The issues involved are the added diffi-
culty for clients in understanding component specifications,
and in reasoning about client program behavior. The conclu-
sion is that making pointers/references visible to component
clients needlessly complicates specification and verification.

Categories and Subject Descriptors

D.2.1
ologies.

[Requirements/Specifications]: Languages, Method-

D.2.4 [Software/Program Verification]: Correctness proofs,
Formal methods, Programming by contract, Reliability.

General Terms
Design, Reliability, Languages, Verification.

Keywords

Java, Pointers, References, Specification, Verification.

1. INTRODUCTION

A well-known “folk theorem” in computing circles is that
nearly every problem can be solved with one more level of
indirection. Like most folklore, this claim is partially true—a
fact not lost on programming language designers, who have
consistently delivered not only computational models, but a
variety of language constructs, to help us more easily write
programs that use indirection.

The belief is a dangerous one, however, which has been noted
many times over the past few decades. Writing programs more
easily is one thing. Reasoning more easily about their behav-
ior is quite another. As early as 1973, Tony Hoare remarked of
pointers that “their introduction into high-level languages has
been a step backward from which we may never recover” [10].
In 1976, Dick Kieburtz explained why we should be “pro-
gramming without pointer variables” [15]. And in 1978, Steve
Cook’s seminal paper on the soundness and relative com-

50

pleteness of Hoare logic [3] identified aliasing (of arguments
to calls, i.e., even in a language without pointer variables) as
the key technical impediment to modular verification. There
have been recent papers (e.g., [19, 23]) showing how it is tech-
nically possible to overcome such problems, but apparently
only at the cost of even further complicating the programming
model that a language presents to a software engineer.

Why do we need another paper about this issue? The conse-
quences of programming with pointers have been examined so
far primarily in the context of programming language design
and formal methods. We take a position in the context of the
human element of specification and verification:

Making pointers/references visible to component clients
needlessly complicates specification and verification.

In supporting this position, we rely in part on another, and far
older, bit of folklore: “Occam’s Razor”, a.k.a. the Law of Par-
simony. It holds that simpler explanations of phenomena are
better than more complex ones. The phenomena of software
behavior are entirely of our own making, giving us ample op-
portunity to control the intellectual complexity and compre-
hensibility of specifications and reasoning based on them.

Throughout the paper (and with apologies to C++ gurus, as
noted in Section 5.1) the terms “pointer” and “reference” are
used interchangeably. The point, so to speak, is that from the
standpoint of specification and verification difficulties they
amount to the same thing. Code examples use Java notation.
The reader is also assumed to be familiar with the basis for
standard model-based specifications but not with any particu-
lar specification language; RESOLVE [27] is used for specifi-
cation examples, but the notation is explained right here.

Section 2 discusses the difference between value and reference
variables, which might seem so well known as to go without
saying. (The reason for saying it anyway is detailed in Section
5.2.) Section 3 describes the serious impact of this distinction
on the complexity of behavioral specifications, and Section 4
describes the impact on modular verification. Section 5 dis-
cusses related work. Section 6 presents our conclusions.

2. VALUES VS. REFERENCES

Popular object-oriented languages, including C++, Eiffel, and
Java, share a bizarre feature. They create a dichotomy between
two kinds of types and, therefore, two kinds of variables:

Value variables, which stand for values of the built-in
types (value types) such as boolean, char, and int.

Reference variables, which stand for references to objects
whose values are of types (reference types) introduced
through interfaces and classes.

Why is this dichotomy “bizarre”? It clearly is not intuitive,
which is obvious if you have ever tried to explain and justify

Gary T Leavens
50

it to students. Parsimony certainly suggests having only
value variables or only reference variables, not both.

Knowing Hoare’s hints on programming language design and
recognizing the elegance of some purely functional program-
ming languages, the C++, Eiffel, and Java designers must have
preferred to have only value variables, all other things being
equal. But all other things are not equal. For one thing, there
is the folk theorem about indirection. In fact, the use of indi-
rection is a little like the use of tobacco: an addictive bad
habit. Modern programming languages have contributed to
the problem by making indirection harder and harder to avoid
and programs using indirection easier and easier to write. Ref-
erence variables are everywhere in Java yet carry no syntactic
baggage at all! So surely it would be considered sacrilege to
remove easy indirection from any modern imperative lan-
guage—even though the effect of indirection, when truly ap-
propriate as it is occasionally, could be provided by a small
set of library components offering comparable power and per-
formance profiles to language-provided pointers [12, 14].

Of course, tradition is not the reason these popular languages
distinguish between values and references. Language design-
ers simply failed to discover another way to make programs
efficient in terms of execution time and storage usage [11].
Value variables can be represented with small chunks of stor-
age that can easily be copied, leaving x and y completely inde-
pendent in code following the assignment statement here:

int x;

int y;

y = x;

If user-defined types were value types that behaved like ints,
then this kind of code could be terribly inefficient. For exam-
ple, suppose x and y were value variables in the following Java
code—remember they are not—and so would remain inde-
pendent in code following the assignment statement:

SetOfInt x = new SetOfInt ();
SetOfInt y = new SetOfInt ();

y= X3

The assignment would then entail deep copying of a SetOfiInt
object representation, which presumably would take time lin-
ear in the size of the set x. Overriding the assignment operator
to make a deep copy is recommended practice for C++ pro-
grammers who use the Standard Template Library [24], pre-
cisely because this leaves x and y independent of each other
following the assignment. The Java assignment operator, on
the other hand, cannot be overridden. An optional clone
method is supposed to make a deep copy (but it doesn’t, in
fact, even for the collections in the popular java.util package).

Having reference variables directly addresses the performance
problems involved in copying large data structures because:

the representations of all variables remain small, i.e., the
size of one pointer each, although every reference variable
still refers to an object whose representation is a poten-
tially large data structure; and

the assignment statement is fast for both value and refer-
ence variables.

Most of the rest of this paper discusses the price paid for fol-
lowing this road to efficiency: complications in specification
and verification, and therefore in understanding and reasoning

51

about program behavior. The appendix (adapted from [14])
briefly explains the swapping paradigm, an alternative ap-
proach that permits the same efficiency to be achieved without
introducing references into the language model, specifica-
tions, or programmer reasoning. The purpose of the appendix
is to suggest that there are other solutions to the apparent rea-
soning vs. efficiency trade-off, i.e., that the choice is not lim-
ited to a pure functional programming paradigm (reasoning
over efficiency) or the standard object-oriented programming
paradigm (efficiency over reasoning).

3. IMPACT ON SPECIFICATION

Simply introducing reference types into a language model
makes it harder for clients to understand the specified behav-
ior of components—if such behavior were carefully specified,
which in practice (e.g., Java component libraries) it is not.
This section illustrates the additional complication by de-
scribing a reference type in a model-based specification lan-
guage, RESOLVE, that is designed for specifying value types
[27]. That is, there should be no syntactic sugar through
which the specification language might mask the fact that
there is a reference type. This approach allows an apples-to-
apples comparison of the underlying “intellectual load” intro-
duced by value vs. reference types, both on component speci-
fiers and on clients of those specifications.

Wouldn’t it be fair to (also?) select a specification language
that is designed to handle reference types, and use it to try to
specify value types? Not really. Variables in traditional
mathematics stand for values; they do not stand for references
to objects that have values. In other words, a hypothetical
specification language that is designed to hide references be-
hind syntactic sugar must still, in the final analysis, “mean”
(i.e., have its semantics) in the domain of traditional mathe-
matics. The verification conditions arising in correctness
proofs must be stated in traditional mathematics in order that
proofs can be carried out. “Desugaring” from references to
values is, therefore, ultimately required. It is only in the
desugared version of this hypothetical specification language
that we could really compare the relative difficulties values
and references pose for specification writers and readers.

3.1 Defining Mathematical Models for Types
Let’s start with a simple case: specifying the mathematical
model for a built-in value type. For example, for type int in
Java the obvious mathematical model is a mathematical inte-
ger constrained to be within some bounds. In RESOLVE nota-
tion, this is expressed as follows:

type int is modeled by integer
exemplar i
constraint
-2147483648 <= i <= 2147483647

The exemplar clause introduces an arbitrary name for a proto-
typical variable of the new type, and the constraint clause is
an assertion that describes such a variable’s value space. So,
the meaning of this specification is that in reasoning about
Java code such as that shown earlier using int variables, you
should think of the values of x and y as being mathematical
integers like 1372 and —49 (i.e., not as strings of 32 hits).

3.1.1 Value Type Specification

A similar scenario arises for a type such as SetOflnt whose
mathematical model is more complex and whose representa-
tion is potentially large. For example, if SetOfInt were a value

Gary T Leavens
51

type in the earlier Java code—remember it is not—then you
would want to think of the values of x and y as being sets of
numbers like {1, 34, 16, 13} and {2, -9, 45, 67, 15, 16, 942, 0}.
The mathematical model specification would look like this:

type SetOfInt is modeled by
finite set of integer
exemplar s
constraint
for all k: integer where (k is in s)
(-2147483648 <= k <= 2147483647)
initialization ensures

s = {}

The initialization clause says that when a new SetOflnt vari-
able is declared, its value is the empty set.

3.1.2 Reference Type Specification

Unfortunately, life is not so simple in Java: SetOfint is a refer-
ence type. In order to reason soundly about what your pro-
grams do, you must think of the values of xand y as being
references to objects whose values are sets of numbers like {1,
34, 16, 13} and {2, -9, 45, 67, 15, 16, 942, 0}. That is, the fact
that this is a reference type must be made explicit in the type’s
mathematical model specification. How can this be done?

Without syntactic sugar to hide references, the obvious ap-
proach (known to many others) is to model the mapping of
references to sets of integers as a mathematical function whose
scope is global to all SetOfint variables. In RESOLVE, you can
say this using abstract state variables that may be accessed
and updated in (the specification of) any method associated
with any variable of the type being specified. An appropriate
mathematical model can be expressed as follows; there are
other ways to do it but this is the simplest one we know:

state variables
last: integer
objval: function from integer to
finite set of integer

constraint
for all r: integer
(for all k: integer

where (k is in objval(r))
(-2147483648 <= k <= 2147483647))
initialization ensures
for all r: integer (objval(r) = {})

type SetOfInt is modeled by integer
exemplar s
initialization ensures
last = #last + 1 and
objval = #objval and
s = last

The state variable last is an abstraction of the address held in a
SetOfInt variable. Its purpose is to ensure that a newly con-
structed SetOfInt object is independent of all others. The start-
ing value of last does not matter because, each time a new
SetOfInt object is constructed, the value of last is incremented
(“#” before a variable name denotes the old value). Since last
is an abstract variable, there is no need to worry about eventual
overflow.

The value null, however, is an annoying problem: there must
be some way to tell it apart from other values. This can be
handled in the above model with a minor change:

initialization ensures
last = 0 and

52

in which case null is modeled by 0. Throughout the rest of
this paper, however, we ignore the possibility of null refer-
ences. There are two reasons. First, we are trying to evaluate
how little additional trouble is necessarily entailed by having
reference types. Allowing null references only makes method
specifications messier, i.e., what happens for null and what
happens for non-null values of all the method parameters that
are of reference types. Second, it might be possible in princi-
ple to have a language in which there were reference types but
no null references. Java is used here for illustration, but we
don’t want to limit observations about reference types to Java.

The state variable objval is an abstraction of the mapping be-
tween references and the values of the objects they refer to.
Again, objval is an abstract mathematical variable, so there is
no problem that it (or, for that matter, last) has a value from a
mathematical domain that is manifestly too large to represent.
In this specification, we decided to initialize objval so every
possible reference is mapped to an empty set. The illusion is
that there is an infinite pool of objects whose values are empty
sets of integers, and that every time a new SetOflInt object is
constructed, one of these pre-formed objects is selected from
that pool. There are other ways to model the situation, of
course, but none is any simpler or cleaner when written out.

It is already evident that the mathematical machinery involved
in modeling the reference type is significantly more complex
than that needed to model the corresponding value type. But
this is only part of the problem; there remains the issue of
specifying the behavior of methods.

3.2 Defining Method Behavior

Let’s consider a method to add an int to a SetOflInt:
public void addInt (int i);

3.2.1 Value Type Specification
If SetOfInt were a value type in Java—remember it is
not—then the specification for addInt might look like this:

evaluates i
updates self
requires
i is not in self
ensures
self = #self union {i}

Before the precondition (requires clause) and the postcondi-
tion (ensures clause), the lists of variables classify each vari-
able in scope as either unchanged (restores or evaluates list)
or potentially modified (updates or replaces list). “Restores”
means that the abstract value of the parameter undergoes no
net change from call to return, but it might be modified tempo-
rarily while the method is operating. Because i is passed by
value in Java, and the corresponding actual parameter is
treated as an expression, i is listed as having evaluates mode.

3.2.2 Reference Type Specification
Here is what happens because SetOfInt is really a reference type:

evaluates i
restores self,
updates objval
requires
i Is not in objval(self)
ensures
objval(self) = #objval(self) union {i} and
for all r: integer where (r /= self)
(objval(r) = #objval(r))

last

Gary T Leavens
52

Note that self is not changed because it is a reference. But the
SetOfInt object it refers to has its value (i.e., objval(self))
changed. The last clause of the postcondition says that no
other SetOfInt object has its value changed.

All the other public methods for SetOfInt have specifications
with the same flavor as addInt. So, all of this is “boilerplate”:

restores self,
updates objval
ensures
for all r: integer where (r /= self)
(objval(r) = #objval(r))

last

By making these oft-repeated specification clauses implicit
with a wave of the hand, it is possible to create a specification
language with enough syntactic sugar to simplify the look of a
specification for a reference type. In ESC/Modula-3 [19], for
example, variables not in a “modifies” list are preserved, and
the value of a referenced object (e.g., objval(self)) can be listed
as though it were a variable name, so the short version of the
above statements is (in RESOLVE-like syntax) just:

updates objval(self)

This does not materially change the intellectual task of under-
standing the meaning of the specification, however. And as
noted in Section 4, the underlying additional complication of
references reveals itself once you start relying on that specifi-
cation to try to reason about client code that uses SetOflInt.

3.3 Assignment
It is instructive to specify the behavior of the Java assignment
operator, prototypically of the following form:

lhs = rhs;

3.3.1 Value Type Specification
If SetOfInt were a value type in Java—remember it is not—then
the specification would be:

evaluates rhs
replaces lhs
ensures

rhs = lhs

Note that the “=" in the specification is not itself an assign-
ment operator, but denotes the assertion of ordinary mathe-
matical equality between the mathematical models of Ihs and
rhs. We have written “rhs = lhs” rather than the equivalent
“lhs = rhs” to emphasize this, any ambiguity being removed
by the specification that rhs is merely evaluated. The confus-
ing use of “=" as an assignment operator is an unfortunate
design choice that crept from Fortran back into C after having
been nearly eradicated by “:=" in Algol-like languages.

3.3.2 Reference Type Specification

Interestingly, the assignment specification looks virtually
identical for SetOflInt as a reference type, the only difference
being that last and objval are also listed as being unchanged:

evaluates rhs
restores last, objval
replaces lhs
ensures

rhs = lhs

Maybe there is some comfort in knowing that the assignment
operator does “the same thing” for value and reference vari-

53

ables. Of course, the only reason it does “the same thing” is
that the mathematical model for a reference type makes the
value of a reference variable explicit and distinct from the
value of the object it refers to. The assignment operator sim-
ply copies the value of the (value or reference) variable on the
right-hand side to that on the left-hand side.

4. IMPACT ON MODULAR VERIFICATION

It is widely acknowledged that practical verification must be
modular, a.k.a. compositional. Factoring of the verification
task cuts along the lines of programming-by-contract [22].
That is, a component implementation is verified against its
specification once and for all, out of the context of the client
programs that might use it. The legitimacy of client use of a
component implementation is gauged during verification of
the client, based on knowledge of only the component specifi-
cation, i.e., without “peeking inside” the separately-verified
component implementation and without reverifying any part
of it on a per-use basis.

The primary verification issue for software with references
stems from the possibility of aliasing: having two or more
references to the same object. Aliasing can arise either from
reference assignment (the case considered here) or from pa-
rameter-passing anomalies (the case Cook considered in his
study of Hoare logic [3]; see also [13, 17]). The challenge here
is to discover how the specification of SetOfInt in Section 3
might be used in modular verification of a client of SetOflnt, if
the client program could execute a reference assignment.

Let’s consider a relatively simple situation where the client
program is a main program having two “helper” operations P
and Q with specifications not shown:

import Section3.SetOfInt;
class Client {
private static void P (SetOfInt si) {

}

private static int Q (int i) {

public static void main (...) {
int j, k;
SetOofInt si
SetOfInt s2

new SetOfInt();
new SetOfInt();

P(s1);

k = QGD:

- // point A
P(s2); // point B

}
}

Suppose this program uses no other classes or constructs that
might cause modular verification problems, so the focus is
entirely on the impact of using SetOfInt. In other words, sup-
pose main, P, and Q could be verified independently except for
any effects introduced by using SetOfint.

4.1 Value Type Verification

If SetOfInt were a value type in Java—remember it is not—then
variables of this type could be passed from main to P without
fear that modularity might be compromised. The specification
of SetOfInt as a value type makes this clear. There are no state
variables in that specification and, consequently, no shared

Gary T Leavens
53

state would be introduced among main, P, and Q as a result of
their common visibility over the SetOfint class. For example,
suppose the intended behavior of P were this:

updates si
ensures
si = #si union {13}

You would be able to reason about the correctness of the body
of P independently of the bodies of main and Q because there
would be nothing P’s body could do to the values of any vari-
ables in the program other than the argument passed for the
formal si in a given call. The same would be true of the bodies
of main and Q. Reasoning would remain modular even with
this user-defined type in the picture—if it were a value type.

4.2 Reference Type Verification
In truth, SetOfint is a reference type. But suppose, in a fit of
wishful thinking, you decided that it didn’t matter that much
and made the simplification of thinking of SetOfInt as a value
type. Given the specification above, you might expect P to
have the following body:

if (I si.contains (13)) {

si.addInt (13);
3

The problem with your thinking would be that P has visibility
over the reference type SetOfInt, including the abstract state
variables last and objval. Through them P might do other
things. For example, P might copy and save the reference sl
that main passes in the first call, and then quietly change ob-
jval(sl) through that alias during the next call. If you errone-
ously thought of SetOfint as a value type, then it would seem
that the value of s1 changed spontaneously between the points
labeled “A” and “B” in main even though the variable sl was
not even mentioned in the statement executed between them.
In reality, of course, what was changing was objval(sl); but by
hypothesis you were oblivious to the abstract state variable
objval and were thinking of si as a value variable— a “no-no”.

So, the following might be the body of P. It also seems to sat-
isfy the specification above in terms of its effect on si, if you
treat si as a value variable and thereby ignore objval. Here,
Alias is a simple class with two static methods, saveTheAlias
and theAlias, which copy an Object reference and return the
copy, respectively. The point is that nowhere outside the body
of P is there even a hint that an alias is being kept inside it.

if (Alias.theAlias () !'= null) {
((SetOfInt) Alias.theAlias ()).clear Q;

}

Alias.saveTheAlias (si);

if (! si.contains (13)) {
si.addInt (13);

}

In reasoning about the body of main, how could you predict
the strange behavior resulting from this code without examin-
ing the body of P—and thereby giving up modular reasoning?
The key to salvaging modularity is to realize that the specifi-
cation of SetOfInt as a reference type involves two abstract
state variables, last and objval, that are visible throughout
main, P, and Q. From the reasoning standpoint, there are vari-
ables in this program that are global to main, P, and Q, al-
though the syntax of Java does a great job of hiding them.

Now main still can be verified independently of Pand Q de-
spite sharing last and objval with them. The specifications of

54

P and Q simply must describe their effects on the abstract state
variables last and objval as well as on their explicit parame-
ters. P’s specification should be changed to this:

evaluates si
restores last
updates objval
ensures
objval(si) = objval(#si) union {13} and
for all r: integer where (r /= si)
(objval(r) = #objval(r))

Knowing only that P preserves last does not allow the verifier
of main to be sure that P cannot create an alias by copying si
and then changing the object value later. But the “nothing
else changes” clause in the postcondition prevents a correct
body for P from doing anything funny with an alias (like the
second body above) even if it saves one.

Another possibility is that maybe the above specification isn’t
really what is wanted! Perhaps the weird implementation of P
is correct according to the programmer’s intent, and the prob-
lem is specifying what P is supposed to do. Such a situation
also can be handled in this specification framework.

This example shows why it is critical for sound reasoning that
a programmer not imagine and/or hope that reference variables
are sort of like value variables. They aren’t.

Can Q be verified independently of main and P despite sharing
last and objval with them? Here, main and P can manipulate
last and objval by executing any series of SetOfInt method
calls. It turns out that Q cannot see the effects of those ma-
nipulations even if it declares and uses SetOfInt variables of
its own—and vice versa. But the basis for this claim is not
clearly evident from the specification of SetOfInt. It is a con-
sequence of a special “non-interference” property that arises
from the way the SetOfInt specification uses the abstract state
variables: Neither of two methods declaring their own SetOfInt
variables but otherwise not communicating with each other
can detect changes that are made by the other to the abstract
state variables. So, curiously, Q can be verified independently
of main and P in this case even if its specification does not
include a “nothing else changes” clause.

5. RELATED WORK

Following the early papers cited in Section 1, there have been
some interesting recent episodes in the literature on program-
ming language design, specification, and verification. They
suggest a fundamental struggle between acknowledging the
folklore about the importance and power of indirection, and
the reasoning problems arising from its use. We briefly review
two language designs, the cases of C++ and Java, in Sections
5.1 and 5.2, respectively. Other researchers have investigated
some of the specification and verification difficulties arising
from pointers. We briefly discuss their work in Section 5.3.

5.1 C++

C++ makes a distinction between pointers and references, as
explained by Bjarne Stroustrup, the creator of C++ [30]:

Acreference is an alternative name for an object. The main
use of references is for specifying arguments and return
values for functions in general and for overloaded opera-
tors... [T]he value of a reference cannot be changed after
initialization; it always refers to the object it was initial-
ized to denote.

Gary T Leavens
54

That is, references were introduced into C++ primarily to sim-
plify parameter passing and overload resolution. These pro-
gramming language concerns had nothing to do with trying to
address the reasoning problems that arise from using pointers.
Indeed, C++ still has pointers, too.

The decision to complicate C++ by not only introducing refer-
ences, but making them different from pointers in a rather sub-
tle way, might seem to be another “step backward”. But other
language features combine with references to give the C++
programmer the flexibility to change the default programming
model from reference-oriented to value-oriented. That is, it
turns out it is quite possible in C++ to keep pointers and refer-
ences from bubbling up through component (class) interfaces
where they must be faced by clients reading specifications and
verifying client code. One of these extra features is the ability
to override the assignment operator and copy constructor so
they make deep copies, not merely copies of references.

The problem is that there is a performance penalty for making
deep copies, as discussed earlier. Luckily, the flexibility of
C++ does not stop there. It is also possible to make both the
assignment operator and copy constructor private, so they are
simply unavailable to clients of a class.

We have taken advantage of the latter feature (and several oth-
ers) to create a disciplined style of programming in C++, the
RESOLVE/C++ discipline [14, 33], in which adherence to many
rules of the discipline is compiler-checked by C++ itself. The
bottom line is that you can program in C++ using what are
technically reference variables yet maintain the illusion that
you have only value variables. To achieve this, we introduced
the swap operator [9] to replace the private assignment opera-
tor and copy constructor. Then we designed a large library of
class templates [25] whose formal specifications allow clients
to reason modularly about client code [14, 33]. The RE-
SOLVE/C++ discipline has been shown to be rather easily un-
derstandable and usable by introductory CS students [20, 28,
29] and has been shown to result in dramatically good code
quality when used to build a commercial software system [14].
See the appendix for a brief discussion of the key idea behind
the discipline, i.e., the swapping paradigm.

5.2 Java

By the time Java was born, Sun Microsystems apparently
sensed that people were worried about the “safety” of their
programming languages. Thus, the conservatism of Java’s
design was heavily stressed. In the first paragraph of The Java
Language Specification, James Gosling, Bill Joy, and Guy
Steele wrote [7]:

Java is intended to be a production language, not a re-
search language, and so, as C. A. R. Hoare suggested in his
classic paper on language design, the design of Java has
avoided including new and untested features.

Some of the early literature about Java also argued that it did
not have certain old and well tested but known-to-be-
dangerous features—Ilike pointers. For example, consider this
passage written by Gosling and Henry McGilton in their 1996
white paper on The Java Language Environment [8]:

[P]ointers are one of the primary features that enable pro-
grammers to put bugs into their code. Given that struc-
tures are gone, and arrays and strings are objects, the need
for pointers to these constructs goes away. Thus the Java
language has no pointers.

55

Later, it became clear that this claim was a bit of an overstate-
ment, or at least that it could be considered correct only in the
legalistic sense that Java does not have pointer syntax. Of
course, it has pointers almost everywhere, but it calls them
references. The potential for confusion was addressed by Sun
Microsystems itself in its on-line Java FAQ [31]:

How can | program linked lists if there are no pointers?

[Answer:] Of all the misconceptions about the Java pro-
gramming language, this is the most egregious. Far from
not having pointers, object-oriented programming is
conducted in the Java programming language exclusively
with pointers. In other words, objects are only ever ac-
cessed through pointers, never directly. The pointers are
termed “references” and they are automatically derefer-
enced for you.

“An object is a class instance or an array. The reference
values (often just references) are pointers to these ob-
jects.” Java Language Specification, section 4.3.1. [em-
phasis is in the original text]

Any book that claims Java does not have pointers is in-
consistent with the Java reference specification.

Interestingly, then, some of Hoare’s general advice about pro-
gramming language design was heeded by the Java designers.
But his specific warning about pointers was ignored, early
claims to the contrary notwithstanding. By the way, what is
the correct answer to the FAQ question, “How do | program
linked lists?” You don’t; you use java.util.List, or similar.

5.3 Specification and Verification

In the 1970s, several researchers addressed pointer specifica-
tion and verification in the context of the precursors to object-
oriented languages, notably Pascal. The culmination of this
effort was reported in a 1979 paper by David Luckham and
Nori Suzuki [21], where the modeling of the state of memory
was made explicit in specifications and verification condi-
tions in a slightly different way than we have done it. They
introduced a mapping from the reference variable’s textual
name, not its mathematical model value (integer in our case),
to the data value it pointed to. They would write the type-
specific state variable we call objval in our example as
P#SetOfInt, for “pointer to SetOfInt”. Special notation also
was introduced for dereferencing a pointer-to-SetOfint variable
s when writing assertions, i.e., P#SetOfIntl sE.

An important missing ingredient in this early work—appar-
ently because Pascal lacked user-defined types with hidden
representations—was any use of abstraction in explaining the
behavior of new types. For example, in our SetOfInt specifica-
tion as a reference type, as a client you may think of objval(s)
as being a mathematical set of integers. In the Luck-
ham/Suzuki style of specification, you would see not only the
top-level reference complication but the pointers to the nodes
in the (unhidden) data structure that represented the set. In
other words, in 1979 and in Pascal, client component specifi-
cations for user-defined types exhibited all the complexity of
specifications of reference types in Java, and then some. This
was technically acceptable from the formal standpoint of veri-
fication but could not be used to give a fair comparison be-
tween specifying reference types and specifying value types
because specifying reference types this way was even uglier
than it needed to be, with no simplifying abstractions.

Gary T Leavens
55

In 1980, George Ernst and Bill Ogden [5] considered similar
specification and verification issues in Modula, which had a
module construct with hidden exported types. They, therefore,
needed to consider the question of how it was possible to hide
reference types behind abstract specifications. They showed it
was technically possible to hide references in module specifi-
cations through the use of some syntactic sugar in the specifi-
cation language and an appropriate abstraction function in the
module implementation. But the complexity moved over the
horizon and into the proof rules:

The only conceptual difficulty with the verification rules
presented in this paper is that they do not prevent a pro-
cedure from side-effecting certain instances of abstract
types which are not parameters to a call on it... [T]o verify
a module, we must verify everything prescribed by the
rule ..., but we must also verify that the side-effecting ...
cannot occur. Developing such a rule is a non-trivial task
... beyond the scope of this paper.

One problem with showing that “the side-effecting ... cannot
occur” is that it can occur according to the Modula language
definition by assignment of a reference variable; even worse,
some programmers want it to occur and write programs that
way, and these programs might be correct, as noted in the ex-
ample of Section 4.2. This means that hiding the complexity
of references in a proof obligation stating that there is no ali-
asing causes a completeness problem.

In 1994, Ernst and Ogden, along with Ray Hookway, published
a verification method for ADT realizations that handled
“shared realizations” [6], including heap storage. Their ap-
proach to modeling references was essentially identical to our
approach for reference types, with syntactic sugar hiding the
abstract state variables that recorded the “serial number” of the
last object constructed and the mapping from reference values
to data values. A value-type specification was possible, with
reference details arising only within the proof of the realiza-
tion, because the only source of possible aliasing in the lan-
guage was within realization code, i.e., not from client assign-
ment of references. Moreover, the paper contained another
caveat about the example used for specification and verifica-
tion with a shared realization:

The example does not use heap memory, because it would
require extensive use of pointers, which would unneces-
sarily complicate both specification and verification...

So, the fundamental problem of how to verify programs with
reference types seems technically solvable by making sure that
the abstract state variables associated with reference variables
“follow them around” throughout the proof. Everyone seems
to agree that the introduction of references seriously compli-
cates both specification and reasoning, though.

Other work that is directly related involves specification and
verification of standard object-oriented software, where refer-
ence types are considered something we just have to learn to
live with. The primary group in this area includes Gary Leav-
ens, K. Rustan M. Leino, Peter Miller, and Arnd Poetzsch-
Heffter, who have worked on similar issues both separately and
in combination. They have tackled the problem of specifying
behaviors of components involving pointers and references,
and have dealt with potential aliasing both from copying of
references and from parameter passing anomalies [4, 16, 17, 18,
19, 23]. Others (e.qg., [2]) also have proposed ways to limit yet
not eliminate aliasing through clever linguistic mechanisms.
But these approaches have yet to be shown understandable by

56

the real programmers they are supposed to enable to deal with
references, and there is little evidence so far that this will be
easily achieved. In other words, despite impressive technical
advances that could contribute to the survival of reference
types in our languages, these ideas still need to be validated
against their ultimate objective: to become practically useful
and comprehensible by real programmers.

Of course, we also have published some prior work in this area
[13, 26, 32, 33, 34], including evidence of the comprehensibil-
ity and practical effectiveness of the RESOLVE discipline,
which simply eliminates reference types [14, 28]. And Man-
fred Broy, like us, has generally suggested designing compo-
nents for ease of specification, as opposed to writing “post-
mortem” specifications for previously-designed components
[1]. This would suggest simply avoiding reference types: the
advice we’d get from Occam, too, were he still around.

To summarize, we were unable to find any work directly com-
paring the intellectual loads involved in specifying value
types vs. reference types, or using such analysis to compare
the difficulty in reasoning about client programs using them.

6. CONCLUSIONS

Adding references types to value types, as in Java, signifi-
cantly and needlessly complicates standard model-based
specifications and the modular verification they help enable.
Technically, everything can be made to “work” with reference
types. Reasonably concise and even plausibly comprehensi-
ble model-based specifications can be designed that account
for the behavioral peculiarities arising from references.

By comparing the complexity of mathematical models and
method specifications in a language that has no syntactic
sugar to mask references, though, it becomes obvious that
reference types introduce a substantially greater intellectual
load than value types for both specifier and client. Writing
specifications for reference types suggests obvious ways in
which syntactic sugar can shorten the specifier’s typing time,
while still acknowledging a distinction between value types
and reference types. Yet it is unlikely that such sugaring can
in any way simplify the specifier’s thinking or the client’s
ability to understand the specified behavior of reference types.

In general, modular verification remains possible in the face of
reference types if the abstract state variables needed to specify
a reference type are considered part of the state space of all
units that have visibility over that type. For verification pur-
poses the abstract state variables used in specifying a reference
type can be treated like additional ghost parameters to all calls
involving one or more explicit parameters of that type. Rea-
soning is, of course, far more complicated with these extra
variables in the picture than it would be with value types only.
But technically you can still have modular verification with
reference types if there are no other language constructs that
thwart modularity.

It remains common practice to encode indirection in Fortran
by using arrays and integer indices as though they were dy-
namically-allocated storage pools and pointers into them.
These arrays and integers are passed among subroutines as
parameters, or sometimes placed in named common blocks that
are visible to a selected subset of the subroutines in a program.
All the subroutines that manipulate these arrays must agree on
how they are using them in order to work correctly together.
Over the years, programming language designers have simpli-
fied the syntax required to do this sort of thing, to the point

Gary T Leavens
56

where in Java there is almost no syntax at all associated with
indirection. But the underlying logic of programming with
references in Java is the same as the logic of programming with
arrays and indices in Fortran.

Is it, then, a good idea to hide the sharing of global state by
making such language “advances”? This sharing is clearly
evident in Fortran programs, but not in Java programs. But
shared state introduced through references can remain hidden
only from the minds of programmers who program without
specifications and who never try to verify their programs. If
specification language designers try to take the same road then
they, too, will find they can hide this shared state only from
the minds of programmers who never try to verify programs.
Eventually, the emperor’s thin disguise will reveal itself to
all—although perhaps not before some catastrophic software
failures cause more people to take a serious look at whether
programming languages should offer constructs that are so
well known to complicate specification and verification.

7. ACKNOWLEDGMENTS

Murali Sitaraman and Gary Leavens and their students, as well
as the members of the OSU Reusable Software Research Group,
have provided much food for thought through various per-
sonal and electronic discussions of some of the issues men-
tioned here. Scott Pike and the anonymous referees helped in
many other ways, too, especially by suggesting how to focus
the paper on its real thesis.

We gratefully acknowledge financial support from the Na-
tional Science Foundation under grant CCR-0081596, and
from Lucent Technologies. Any opinions, findings, and con-
clusions or recommendations expressed in this paper are those
of the author and do not necessarily reflect the views of the
National Science Foundation or Lucent.

8. REFERENCES

[1] Broy, M. Experiences with Software Specification
and Verification Using LP, the Larch Proof Assis-
tant. Research Report 93, Compag Systems Research
Center, Palo Alto, CA, 1992.

[2] Clarke, D.G., Potter, J.M., and Noble, J. Ownership
types for flexible alias protection. In OOPSLA '98
Conference Proceedings, ACM Press, 1998, 48-64.

[3] Cook, S.A. Soundness and completeness of an axiom
system for program verification. SIAM Journal of
Computing 7, 1 (1978), 70-90.

[4] Egle, R. Evaluating Larch/C++ as a Specification
Language: A Case Study Using the Microsoft Founda-
tion Class Library. TR #95-17, Department of Com-
puter Science, lowa State University, Ames, IA, 1995.

[5] Ernst, G.W., and Ogden, W.F. Specification of ab-
stract data types in MODULA. ACM Transactions on
Programming Languages and Systems 2, 4 (1980),
522-543.

[6] Ernst, G.W., Hookway, R.J., and Ogden, W.F. Modu-
lar verification of data abstractions with shared realiza-
tions. IEEE Transactions on Software Engineering
20, 4 (1994), 288-207.

57

[7]1 Gosling, J., Joy, B., and Steele, G. The Java Lan-
guage Specification. Addison-Wesley, Reading, MA,
1996.

[8] Gosling, J., and McGilton, H. The Java Language
Environment: A White Paper. Sun Microsystems,
Inc., 1996; http://java.sun.com/docs/white/langenv/
viewed 8 August 2001.

[9] Harms, D.E., and Weide, B.W. Copying and swap-
ping: Influences on the design of reusable software
components. IEEE Transactions on Software Engi-
neering 17, 5 (1991), 424-435.

[10]Hoare, C.A.R. Hints on Programming Language De-
sign. Stanford University Computer Science Depart-
ment Technical Report No. CS-73-403, 1973. Re-
printed in Programming Languages: A Grand Tour,
E. Horowitz, ed., Computer Science Press, Rockville,
MD, 1983, 31-40.

[11]Hogg, J., Lea, D., Holt, R., Wills, A., and de Cham-
peaux, D. The Geneva convention on the treatment of
object aliasing. OOPS Messenger, April 1992.
http://gee.cs.oswego.edu/dl/aliasing/aliasing.html
viewed 8 August 2001.

[12] Hollingsworth, J.E. and Weide, B.W. Engineering
‘unbounded’ reusable Ada generics. In Proceedings of
10th Annual National Conference on Ada Technology,
1992, ANCOST, 82-97.

[13]Hollingsworth, J.E. Uncontrolled reference semantics
thwart local certifiability. In Proceedings of the Sixth
Annual Workshop on Software Reuse, 1993.

[14]Hollingsworth, J.E., Blankenship, L., and Weide,
B.W. Experience report: Using RESOLVE/C++ for
commercial software. In Proceedings of the ACM
SIGSOFT Eighth International Symposium on the
Foundations of Software Engineering, 2000, ACM
Press, 11-19.

[15] Kieburtz, R.B. Programming without pointer vari-
ables. In Proceedings of the SIGPLAN '76 Conference
on Data: Abstraction, Definition and Structure, 1976.
ACM Press.

[16] Leavens, G.T., and Cheon, Y. Extending CORBA
IDL to specify behavior with Larch. In OOPSLA "93
Workshop Proceedings: Specification of Behavioral
Semantics in OO Information Modeling, 77-80; also
TR #93-20, Department of Computer Science, lowa
State University, Ames, 1A, 1993.

[17] Leavens, G.T., and Antropova, O. ACL — Eliminat-
ing Parameter Aliasing with Dynamic Dispatch. TR
#98-08a, Department of Computer Science, lowa State
University, Ames, 1A, 1998.

[18] Leavens, G. T., Baker, A. L., and Ruby, C. JML: A
notation for detailed design. In Behavioral Specifica-
tions of Businesses and Systems, eds. H. Kilov, B.
Rumpe, and I. Simmonds, Kluwer Academic Publish-
ers, Boston, MA, 1999.

Gary T Leavens
57

[19] Leino, K.R.M., and Nelson, G. Data Abstraction and
Information Hiding. Compaq SRC Rep. #160, 2000.

[20]Long, T.J., Weide, B. W., Bucci, P., Gibson, D. S.,
Hollingsworth, J., Sitaraman, M., and Edwards, S.
Providing intellectual focus to CS1/CS2. In Proceed-
ings of the 29th SIGCSE Technical Symposium on
Computer Science Education, 1998, ACM Press, 252-
256.

[21] Luckham, D.C., and Suzuki, N. Verification of array,
record, and pointer operations in Pascal. ACM Trans-
actions on Programming Languages and Systems 1, 2
(1979), 226-244.

[22] Meyer, B. Object-oriented Software Construction.
Prentice-Hall, New York, 1988; second edition, 1997.

[23] Miller, P., and Poetzsch-Heffter, A. Modular specifi-
cation and verification techniques for object-oriented
software components. In Foundations of Component-
Based Systems, eds. G.T. Leavens and M. Sitaraman,
Cambridge University Press, 2000, 137-159.

[24] Musser, D.R., Derge, G.J., and Saini, A. STL Tuto-
rial and Reference Guide, Second Edition. Addison-
Wesley, Upper Saddle River, NJ, 2001.

[25] RESOLVE/C++ Component Catalog Home Page.
http://www.cis.ohio-
state.edu/~weide/sce/rcpp/RESOLVE_Catalog-HTML
viewed 8 August 2001.

[26] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide,
B.W., Long, T.J., Bucci, P., Heym, W., Pike, S., and
Hollingsworth, J.E. Reasoning about software-
component behavior. In Software Reuse: Advances in
Software Reusability (Proceedings Sixth International
Conference on Software Reuse), LNCS 1844, ed. W.
Frakes, 2000, Springer-Verlag, 266-283.

[27] Sitaraman, M., and Weide, B.W. Component-based
software using RESOLVE. ACM SIGSOFT Software
Engineering Notes 19, 4 (1994), 21-67.

[28] Sitaraman, M., Long, T.J., Weide, B.W., Harner, J.,
and Wang, C. A formal approach to component-based
software engineering: education and evaluation. In
Proceedings 2001 International Conference on Soft-
ware Engineering, 2001, IEEE, 601-609.

[29] Software Component Engineering Course Home Page.
http://www.cis.ohio-state.edu/~weide/sce/now viewed
8 August 2001.

[30] Stroustrup, B. The C++ Programming Language, 3"
edition. Addison-Wesley, Reading, MA, 1997.

[31] Sun Microsystems, Java “Frequently Asked Ques-
tions”. http://java.sun.com/people/linden/faq_b.html
viewed 8 August 2001.

[32] Weide, B.W., Edwards, S.H., Harms, D.E., and
Lamb, D.A. Design and specification of iterators us-
ing the swapping paradigm. IEEE Transactions on
Software Engineering 20, 8 (1994), 631-643.

58

[33] Weide, B.W. Software Component Engineering.
OSU Reprographics, Columbus, OH, 1996.

[34] Weide, B.W. “Modular regression testing”: Connec-
tions to component-based software. In Proceedings
Fourth ICSE Workshop on Component-Based Soft-
ware Engineering, 2001, IEEE, 47-51.

9. APPENDIX: THE SWAPPING PARADIGM

How do you make some variable (say, y) get the value of an-
other variable (say, x)? For example, suppose x and y are vari-
ables of type int, a value type whose mathematical model is a
mathematical integer, as discussed in Section 3.1. Obviously,
you use an assignment statement:

y = X5

What if x and y are variables of a value type VT, where VT’s
mathematical model is relatively complex and its representa-
tion data structure is probably large? Suppose, for example,
that VT is SetOfInt, whose mathematical model is a mathemati-
cal set of mathematical integers, as discussed in Section 3.1.1.
There are now two options for data movement, neither of which
is especially attractive:

1. Consider the assignment operator for SetOfInt to perform
deep copy, so that after the assignment statement we can
think of both x and y as having the same abstract value.
Logically, x and y must behave independently, too, so
changes to x do not side-effect the value of y and vice
versa. This can be terribly inefficient, because without us-
ing fancy data-structure-specific tricks that frequently do
not apply, the assignment operator must take time linear
in the size of x’s representation. Big sets simply take a
long time to copy and hence to assign.

2. Do notview xand y as value variables, but as reference
variables; i.e., change their type from value type VT to ref-
erence type RT, and think of x and y as references to ob-
jects whose values are sets of integers. This fixes the effi-
ciency problem but at the cost of a distressing non-
uniformity in reasoning about program behavior: Some
variables denote values and others denote references. It
also means that the assignment operator creates aliases,
which complicates formal specification and reasoning
about program behavior, as explained in Section 4.2.

Approach #2 has been codified into most modern languages,
notably Java. It is actually far worse than #1 from certain
software engineering standpoints. One reason is that the pro-
grammer now must be aware that variables of some types have
ordinary values while variables of other types hold references
to objects (it’s the objects that have the values). For template
components this creates a special problem. Inside a compo-
nent that is parameterized by a type Item, there is no way to
know before instantiation time whether an assignment of one
Item to another will assign a value or a reference. Of course,
this can be “fixed” as it is in Java, by introducing otherwise-
redundant reference types such as Integer to wrap value types
such as int. Actual template parameters can then be limited to
reference types. This is really ugly, though. And there is still
the issue of the complication caused by references for specifi-
cation and verification, as seen in Sections 3 and 4.

Figure 1 summarizes the data movement dilemma faced by
someone who wants efficient software about whose behavior it
is easy to reason. The conclusion is that this is only attainable

Gary T Leavens
58

by sticking to built-in value types—not incidentally, the only
types available when the assignment operator was introduced
into programming languages—or, at best, by inventing only
new user-defined types that admit “small” representations.

What does "y = x;” do?

makes a deep copy copies a reference

How big is x’s representation?

large

small
Figure 1: The Data Movement Dilemma

Again, how do you make some variable (say, y) get the value of
another variable (say, x)? There is no inherent requirement that
the value of x must not change as a result of the data movement
process. Realizing this opens the door to other possibilities.
The new value of y must be the old value of x, but the new
value of x might be:

the old value of x (to get this behavior we use assignment,
which works well if x’s representation is small); or

undefined; or
a defined, but arbitrary and unknown, value of its type; or
some particular value of its type, e.g., an initial value; or

the old value of y.

It is beyond the scope of this appendix to analyze the pros and
cons of all the possibilities beyond the first one, which is un-
satisfactory as a general approach to data movement. Suffice
to say that leaving x undefined complicates reasoning, al-
though not nearly as much as allowing aliasing; and that leav-
ing x with either an arbitrary or a distinguished value of its
type is actually quite a reasonable thing to do. However, the
last approach— swapping the values of x and y—is both effi-
cient and safe with respect to modular reasoning, and it results
in remarkably few changes to how most programmers write
imperative code [9, 33].

You need to get used to a few new idioms when adopting the
swapping paradigm, e.g., for iterating through a collection
[32]. The biggest effect of the swapping paradigm, however, is
on the design of component interfaces. Consider, for example,
a Set component (parameterized by the Item type it contains)
with operations add, remove, etc. What should add(x) do to
the value of x? The analysis of this question parallels the
analysis of the data movement dilemma as the question was
phrased above. The conclusion is that add should consume x,
i.e., it should leave x with an initial value of its type.

How can this be accomplished? A direct implementation of the
Set component declares a new variable of the parametric type
Item in the body of add, e.g., the data field in a new node that is
to be inserted in a linked list of nodes. This variable is then

59

swapped with x. Swapping simultaneously puts the old value
of x into the Set’s representation data structure, where it needs
to be; and sets the new value of x to the initial value for its
type that was originally in the data field of the node.

What if there are no pointers in the language, though? In an
implementation of the Set component that is layered on top of
a provided List component, for example, the add operation
simply inserts x at the appropriate place into the List that rep-
resents the Set. If the insertion operation for List also is de-
signed using the swapping paradigm, so it consumes its argu-
ment just like add does, then this call does exactly what is
needed.

In other words, in both these situations, the code that you
would have written if using assignment for data movement is
changed in just one respect: assignment of x to its place in the
Set’s representation is replaced by swapping x with its place in
the Set’s representation.

Our experience is that a family of components such as those in
the RESOLVE/C++ component catalog [25] can be designed
according to the swapping paradigm to compose in such a way
that programming with swapping is substantially similar to
programming with assignment statements. But the resulting
components offer efficiency and/or reasoning advantages over
similar components designed in a traditional fashion.

Let’s be clear that we still use the assignment operator with
built-in value types. There is nothing wrong with the follow-
ing statement from either the efficiency or reasoning stand-
points, assuming that x and y are variables of some value type
with a “small” representation:
y = x;

The possibly surprising empirical observation that has been
substantiated by commercial application development is that,
with swapping, there is rarely a need for such a statement when
x and y have user-defined types. You can have value types and
efficiency at the same time.

The main advantages of the swapping paradigm are, then:

The swapping paradigm is easy for imperative-language
programmers to learn and apply.

All types are value types, which allows for understanding
of specifications and modular reasoning that are compli-
cated significantly if reference types creep in.

All pointers and references can be hidden deep within the
bowels of a few low-level components and remain invisi-
ble to a client programmer layering new code on top of
them.

If these low-level components have no storage leaks, then
client programs have no storage leaks, and client pro-
grammers do not have to worry about where to invoke de-
lete in, e.g., C++, because they simply never invoke it. In
the case of a garbage-collected language, e.g., Java, there
is no need for the complications of general garbage col-
lection because there are no aliases and all collection
takes place at predictable times.

Other questions often asked about the interactions between the
swapping paradigm and other programming language and
software engineering issues, such as the role of function opera-
tions, assignment of function results to variables, parameter
passing, etc., are discussed in [9].

Gary T Leavens
59

Modular Verification of Performance Correctness

Joan Krone
Dept. Math. and Comp. Science
Denison University
Granville, OH 43023, USA
+1 740 587 6484
krone@denison.edu

William F. Ogden
Dept. Comp. & Info. Science
The Ohio State Universtiy
Columbus, OH 43210, USA
+1 614-292-5813
ogden@gcis.ohio-state.edu

Murali Sitaraman
Dept. Comp. Science
Clemson University

Clemson, SC 29634, USA
+1 864 656 3444
murali@cs.clemson.edu

Abstract

Component-based software engineering is concerned with
predictability in both functional and performance behavior,
though most formal techniques have typically focused their
attention on the former. The objective of this paper is to present
specification-based proof rules compositional or modular
verification of performance in addition to functionality,
addressing both time and space constraints. The modularity of
the system makes it possible to verify performance correctness
of'a module or procedure locally, relative to the procedure itself.
The proposed rules can be automated and are intended to serve
as part of a system of rules that accommodate a language
sufficiently powerful to support component-based, object-
oriented software.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: formal specification and
verification of software performance.

General Terms

Verification, assertive language, formal specifications.

Keywords

Proof rule, performance, time and space.

1. INTRODUCTION

Predictability is a fundamental goal of all engineering, including
software engineering. To show that a program predictably
provides specified functional behavior, a variety of ways to
apply a system of proof rules to a program for proving
functional correctness have been studied since Hoare’s work.
More recent efforts address the special challenge of modular
reasoning for object oriented, component based software [1, 5,
8, 9, 12]. These systems depend on programmer-supplied
assertions that serve as formal specifications for the functional
behavior of the software. While correct functional behavior is
critical to any software system, in order to achieve full
predictability, we must ultimately address the issue of
performance as well.

A program that carries out the right job, but takes longer than
available time to complete is of limited value, especially in
modern embedded systems. Similarly, a program that is
functionally correct, but that requires more space than the
system can provide is not useful either. Cheng, Clemens, and

60

Woodside note the importance of the performance problem in

their guest editorial on Software and Performance[21]:
“Performance is a problem in many software
development projects and anecdotal evidence suggests
that it is one of the principal reasons behind cases
where projects fail totally. There is a disconnect
between techniques being developed for software
analysis and design and the techniques that are
available for performance analysis.”

Measurement during execution (e.g., using run-time monitoring)
is a common approach for analyzing performance of large-scale
systems [21]. The objective of this paper is to present static
analysis (and hence, a priori prediction) as an alternative to
measurement. In particular, the focus is on modular or
compositional performance reasoning: Reasoning about the
(functionality and performance) behavior of a system using the
(functionality and performance) specifications of the
components of the system, without a need to examine or
otherwise analyze the implementations of those components
[17].

Compositionality is essential for all analysis, including time and
space analysis, to scale up. To facilitate compositional
performance reasoning, we have introduced notations for
performance specifications elsewhere [18]. Given functionality
and performance specifications (and other internal assertions
such as invariants), the rest of this paper describes a proof
system for modular verification. Section II sets up the
framework to facilitate automated application of rules, using a
simple example rule. Section III contains proof rules for
verification of procedure bodies and procedure calls, involving
possibly generic objects with abstract models as parameters.
Section IV contains an example to illustrate a variety of issues
involved in formal verification. Section V has a discussion of
related work and summary.

2. ELEMENTSOF THE PROOF SYSTEM

Though the underlying principles presented in this paper are
language-independent and are applicable to any assertive
language that includes syntactic slots for specifications and
internal assertions, to make the ideas concrete we use the
RESOLVE notation [15, 16]. RESOLVE is intended for
predictable component-based software engineering and it
includes notations for writing specifications of generic
components that permit multiple realizations (implementations)
of those components. It also includes notations for specifying
time and space behaviors of an implementation. The
implementations include programmer-supplied representation

Gary T Leavens
60

invariants, loop invariants, progress metrics, and other assertions
depending on the structure.

The proof rules have been designed so that an automated clause
generator can start at the end of a given assertive program and
back over the code replacing the executable language constructs
with assertions about the mathematical domain over which the
program has been written. The clause generator produces a
clause that is equivalent to the correctness of the given program.
The clause can then be evaluated manually, automatically by a
theorem prover, or by a combination to determine whether the
clause is provable in the appropriate mathematical domain, and
thereby whether the program is correct (with respect to its
specification). To illustrate the ideas, we begin with a simple
example. First we consider functional behavior and then address
performance for the following piece of assertive code:

Assumex = 3;
x:=x+1;
Confirmx =4;

Exactly how such an assertive code comes into place, given a
specification and an implementation, is explained in Section III.
In this code segment, the programmer has supplied a pre-
condition indicated by the Assume keyword and a post-
condition following the keyword Confirm with some (assertive)
code in between. To prove the correctness of this segment,
consider the following automatable proof rule for expression
assignment:

C \ Code; Evaluate (exp); Confirm Outcome Exp[x -~
M_Exp(exp)]

C\ Code; x := exp; Confirm Outcome_Exp;

In this rule, C on the left side of both the hypothesis and the
conclusion stands for Context and it denotes the collection of
whatever information is needed about the code in order to reason
about its correctness. For example, the types of variables and
the mathematical theories on which those types are based would
be in the context.

In our example, the Qut come_Exp is “x = 4.” The Code
preceding the assignment is the assertion “Assume x = 3.” In
the assertive clauses, the 3 and 4 are the mathematical integers,
while the assignment statement is performing an increment on a
computer representation of an integer. (The use of mathematical
integers in specifying computational Integer operations is
documented in Integer_Template that specifies Integer objects
and operations, and it is assumed to be in the context.)

Applying the proof rule on the example leads to the following
assertive code:

Assumex = 3; Evaluate(x + 1); Confirmx + 1 =4.

This is the result of substituting the expression “x + 1” for x, the

meaning of [x ~ M_EXp(exp)]. M_EXp denotes putting in the
mathematical expression that corresponds to the programming
expression, thus keeping our assertions over mathematical
entities, rather than programming ones. There is a rule for
Evaluate that causes the expression to be evaluated by the

61

verifier. Similarly, the verifier would simply continue backing
through the rest of the code, applying appropriate proof rules,
eliminating one more constructs in each step.

Now we augment the above rule to prove functional correctness,
with performance-related assertions. Suppose we need to prove
the correctness of the following assertive code:

Assume x = 3 ~ Cum_Dur = 0 ~ Prior_Max_Aug = 0 »

Cur_Aug = 0;

X=x+1;

Confirmx =4 Cum_Dur + 0.0 =D._ + Dy, + *
Max(Prior_Max_Aug, Cur_Aug+0)<S.";

Here, D._ denotes the duration for expression assignment’
(excluding the time to evaluate the expression itself). S._
denotes storage space requirement for expression assignment
(excluding the storage space needed to evaluate the expression
itself and the storage for variable declaration of x which is
outside the above code). The units for time and space are
assumed to be consistent, though we make no assumptions about
the units themselves. The rest of the terms (whose need may not
become fully clear until after the discussion of procedures in
Section III) are explained in the context of the following rule for
expression assignment:

C\ Code; Evaluate(exp); Confirm (Outcome Exp [
Cum_Dur + D.- + Sqnt_Dur_Exp < Dur_Bd_Exp[]
Max(Prior_Max_Aug, Cur_Aug+S._ +
Fut_Sup Disp Exp)< Aug Bd Exp))

[x~~M_EXp(exp)];

C\ Code; x := exp; Confirm Outcome Exp O0Cum_Dur +
Sqnt Dur Exp < Dur Bd Exp [
Max(Prior_Max_Aug, Cur_Aug + Fut_Sup_Disp Exp) <
Aug Bd Exp;

The new rule includes everything needed for functional
correctness, and also includes new clauses about time and space
performance. In spite of past attempts in the literature, it is just
not possible to develop rules for performance correctness
independently of functional correctness, because in general,
performance depends on values of variables (which come from
analyzing functional behavior) [17, 18]. In the example and in
the rule, terms in bold print are keywords and the terms ending
with “ Exp” represent expressions to be supplied by the
programmer and kept up to date by the verifier.

! We have added terms “+ 0.0” and “+ 0" in the expressions
here so that it is easy to match the syntactic structure of the rule
given next.

*In RESOLVE, the right hand side of an assignment statement
is restricted to be an expression. In particular, x :=y is not
allowed on variables of arbitrary types. For copying y to x, the
assignment statement needs to be x := Replica(y). This
interpretation is implicit for (easily) replicable objects such as
Integers for programming convenience. This is what justifies
the time analysis in the present rule. To move the value of y to x
efficiently on all objects large and small, and without
introducing aliasing, RESOLVE supports swapping (denoted by
“:=:") as the built-in data movement operation on all objects [3].

Gary T Leavens
61

First we consider timing. The keyword Cum_Dur suggests
cumulative duration. At the beginning of a program the
cumulative duration would be zero. As the program executes,
the duration increases as each construct requires some amount of
time to complete. The programmer supplies an over all duration
bound expression, noted by Dur_Bd_Exp. This is some
expression over variables of the program that indicates an
amount of time acceptable for the completion of the program.
As the verifier automatically steps backward through the code,
that expression gets updated with proper variable substitutions
as the proof rules indicate.

For example, in the above rule, when the verifier steps backward
over an assignment, the variable, “x,” receiving the assignment
is replaced by the mathematical form of the given expression,
“exp,” in all of the expressions included within the parentheses.

Sqnt _Dur _Exp stands for the subsequent duration expression,
an expression for how much time the program will take starting
at this point. This expression is updated also automatically by
the verifier, along with other expressions in the rule.

The duration (timing) for a program is clearly an accumulative
value, i.e., each new construct simply adds additional duration to
what was already present. On the other hand, storage space is
not a simple additive quantity. As a program executes, the
declaration of new variables will cause sudden, possibly sharp,
increases in amount of space needed by the program. At the end
of any given block, depending on memory management, storage
space for variables local to the block, may be returned to some
common storage facility, causing a possibly sharp decrease in
space.

The right operation for duration is addition and for storage it
turns out to be taking the maximum over any given block. It is
reasonable to assume that for any given program, there will be a
certain amount of space needed for getting the program started.
This will include the program code itself, since the code will
reside in memory. Assuming real, rather than virtual memory,
the code will take up a fixed amount of space throughout the
execution. With this in mind, we think of some fixed amount of
space for any given program that remains in use throughout the
execution. Our rules are written to deal with the space that
augments the fixed storage and increases and decreases as the
program executes. Prior_Max_Aug stands for “prior maximum
augmentation” of space. At the beginning of any program, the
prior maximum will be zero, since only the fixed storage is in
use. As the program executes, over each block, a maximum of
storage for that block is taken to be the Prior_Max_Aug. At
any point in the program, there will be a storage amount over the
fixed storage. We call that the current augmentation of space,
Cur_Aug. Of course, there will be some overall storage bound
to represent what is acceptable. We call that the augmentation
bound expression, Aug Bd Exp. Finally, just as there was an
expression to represent how much additional time would be
needed, there is an expression for how much storage
(displacement) will be needed in the future, the future
supplementary displacement expression,
Fut _Sup_Di sp_Exp.

62

3. PROCEDURES

We examine a more complicated procedure construct in this
section, having introduced basic terminology using the
expression assignment proof rule. We present a rule for
procedure declarations and one for procedure calls. These rules
apply not only to ordinary code when all variables and types are
previously defined, but to generic code as well, i.e., code written
for variables that have not yet been tied to a particular type or
value. This capability to handle generic code is critical for
reusable, object-based components.

3.1 Procedur e Declaration Rule

Associated with every procedure is a heading that includes the
name, the parameter list, and assertions that describe both
functional and performance behavior:

P Heading:

Operation P(updatesx: T);
requiresP_Usg Exp/ x \;
ensuresP_Rslt Exp/ x, #x \;
duration Dur_Exp/ x, #x \;
manip_disp M_D_Exp/ x, #x \;

This heading is a formal specification for procedure P. We use
separate keywords Operation to denote the specification and
Procedure to denote executable code that purports to implement
an operation. We have included only one parameter on the
argument list, but of course, if there were more, they would be
treated according to whatever parameter mode were to be
indicated. The updates mode means that the variable is to be
updated, i.e., possibly changed during execution.

In the heading, the type T may be a type already pinned down in
the program elsewhere, or it might represent a generic type that
remains abstract at this point. The requires and ensures clauses
are pre and post conditions respectively for the behavior of the
operation, and the angle brackets hold arguments on which the
clauses might be dependent. Due to page constraints, the rule
does not include other potential dependencies such as on global
variables.

Details of performance specification are given in [18].
Duration is the keyword for timing. Dur_Exp is a
programmer-supplied expression that describes how much time
the procedure may take. That expression may be given in terms
of other procedures that P calls and it may be phrased in terms
of the variables that the operation is designed to affect. We may
need to refer both to the incoming value of X and to the resulting
value of X in these clauses. We distinguish them by using #X
for the value of X at the beginning of the procedure and X as the
updated value when the procedure has completed. The last part
of the Operation heading involves storage specification. Here,
manip_disp (termed trans disp in [18]) suggests manipulation
displacement, i.e., how much space the procedure may
manipulate as it executes.

Gary T Leavens
62

Given the operation heading, we next consider a rule for a
procedure declaration to implement an operation.

C O {P_Heading} \ AssumeP_Usg Exp [

Cur_Dur=0.00

Prior_Max_Aug= Cur_Aug = Disp(x);

P Body;

Confirm P_Rslt Exp OCur_Dur +0.0 <

Dur Exp [
Max(Prior_Max_Aug, Cur_Aug+0)<M_D_Exp;

C O {P_Heading} \ Code; Confirm Outcome Exp;

C\P_Heading; Procedure P_Body; end P;
Code; Confirm Outcome_Exp;

As in the assignment rule, C stands for the context in which the
procedure occurs. Note that P_Headi ng, the specification of
Operation P, is added to the context making it possible for
reasoning about the procedure to take place. The conclusion
line of the rule allows the procedure declaration to be made and
followed by some code and a clause to confirm after the code.

The hypotheses of the rule indicate that the procedure is to be
examined abstractly, proving that no matter what value for the
parameter is passed in, the result will satisfy both the functional
and performance requirements.

The first hypothesis checks functional behavior by showing that
if the requires clause is met, then the ensures clause is satisfied
upon completion of the procedure body. For timing, we set the
Cum_Dur to 0O thereby localizing the proof to just this
procedure, avoiding the pitfall of having to consider the entire
program when proving correctness for just this procedure. After
the procedure body, we confirm that the Cum_Dur remains
below Dur Exp, the bound expression given in the
specifications. It is assumed that the Cum_Dur acts like an
auxiliary variable updated automatically at each step.

Finally, we address the storage requirements. Before the
procedure body, we set the Prior_Max_Aug and the Cur_Aug
both to be the amount of space required by the parameter, X.
(Alternatively, the displacement of parameters at the beginning
could be subtracted at the end.) This is necessary to retain the
local nature of the proof process. The only concern that the
procedure rule has about space is what the procedure uses above
what has already been used in the past and what might be used
in the future. After the body, the rule checks that the max over
the stated values is within the specified bound.

63

3.2 Procedure Call Rule

A picture serves to motivate space-related assertions in the
procedure call rule. The timing aspects of the rule are more
straightforward and they are not shown in this picture.

Spacel

Procedure Call P{a)

Aug Bd Exp
bound

Fized '
Displacement

Code F(a)

Along the lower part of the picture the “fixed displacement”
represents some amount of storage necessary for the program to
run, an amount that does not vary throughout execution. The
code itself is included in this fixed storage. Above the fixed
storage the execution of the code requires a fluctuating amount
of space, increasing when storage for new variables is allocated
and decreasing when it is released.

The auxiliary variable, Cur_Aug, represents at any point what
the current amount of storage is over and above the fixed
storage. Note that the same variable appears twice on the
picture, once at the place where a call to procedure P is made
and again at the point of completion of P. Cur_Aug has a value
at every point in the program and is continually updated.
Similarly, as the execution procedes, Prior_Max_Aug keeps
track of the maximum storage used during any interval. In the
picture at the point where the call P(a) is made, Cur_Aug is
shown, as is Prior_Max_Aug. Of course, as the code execution
progresses, the value for Prior_Max_Aug is updated whenever
a new peak in storage use occurs.

Within the procedure body, some local variables may be
declared. This augmented displacement is denoted in the figure
by a spike in the line representing space allocation for the
procedure code. The specifications of the procedure include
M _D_EXxp, an expression that limits the supplementary storage a
procedure may use. The procedure must stay within that limit in
order to be considered correct in terms of performance. As the
picture shows, the M_D_EXp is an expression about only local
variables and whatever parameters are passed in. These are the
only variables under the control of the procedure and they are
the only ones the procedure should need to consider for
specification and verification purposes.

Disp is an operator that extracts the amount of storage for a
given variable. This operator gets its value in the displacement
clause given in an implementation of an object-oriented concept,
and it is usually parameterized by the object’s value [18]. At the

Gary T Leavens
63

point where the call P(@) is made the picture shows Disp(a), to
denote that a’s space allotment is part of the current
augmentation displacement. Upon completion of the procedure
call, the new value of a, shown as ?a may be different and may
require a different amount of space from what its value needed
at the time of the call. Disp(?a) is part of the current
augmentation at the point of completion.
Fut _Max_Sup_Exp, as noted before, describes a bound on the
storage used by the remaining code, i.e., code following the
current statement under consideration.

Given his explanation, the procedure call rule follows:

C O {P_Heading} \ Code; Confirm P_Usg_Exp[x~a] [
O ?a: M_Exp(T), if P_Rslt Exp[#x~a, x?a] then
Outcome_Exp[a~?a] [
Cum_Dur + Dur_Exp[#x~a, x~?a] +

Sqnt_Dur Exp[a~?a] < Dur Bd_Exp[a~?a] [I
Max(Prior_Max_Aug, Cur_Aug,

Max(M_D_Exp[#x~a, x~ ?a],
Disp(?a) + Fut_Sup Disp Exp[a~?a]) — Disp(a))
< Aug Bd Exp[a~?a];

C O {P_Heading} \ Code; P(a); Confirm Outcome Exp [
Cum_Dur + Sqnt_Dur_Exp < Dur Bd Exp U
Max(Prior_Max_Aug, Cur_Aug + Fut_Sup Disp Exp) <
Aug Bd Exp;

The heading for P is placed in the context, making available the
specifications needed to carry out any proof. In the conclusion
line, a call to P with parameter a is made at the point in the
program following Code.

In modular reasoning, verification of this code that calls an
operation P is based only on the specification of P. The
functional behavior is addressed in the top line of the hypothesis
part of the rule. To facilitate modular verification, at the point in
the code where the call to P is made with parameter a, it is
necessary to check that the requires clause, P_Usg_Exp with
a replacing X holds. The second hypothesis, also about
functional behavior, checks to see that if the procedure
successfully completes, i.e., the ensures clause is met with the
appropriate substitution of variables, then the assertion
Qut comre_Exp holds, again with the appropriate substitution of
variables. These substitutions make it possible for the rules to
talk about two distinct times, one at the point where a call to the
procedure is made and one at the point of completion. The
substitution of what variables need to appear at what points in
the proof process avoids the need ever to introduce more than
two points in the time line, thereby simplifying the process.

It is important to note here that the specification of Operation P
may be relational, i.e., alternative outputs may result for the
same input. Regardless of what value results for parameters
after a call to P, the calling code must satisfy its obligations.
This is the reason for the universal quantification of variable ?a
in the rule.

64

The next hypothesis in the rule is about timing, and it checks,
after variable substitution, that any result from the procedure
will lead to satisfaction of specified time bounds for the client
program. It is not surprising that any reasoning about time or
space must be made in terms of the variables being manipulated,
since their size and representation affect both.

Finally, the displacement hypothesis considers the maximum
over several values. To understand this hypothesis, the picture
helps by illustrating the prior maximum augmentation, current
augmentation both at the point of the call and at the point of the
return. The picture also shows the displacement for actual
parameter a at the beginning of the procedure call and the
displacement of ?a at the end.

The displacement hypothesis involves a nested max situation.
We consider the inner max first. Here we are taking the
maximum over two items. The first is the expression from the
procedure heading that identifies how much storage the
procedure will need in terms of the local variables and the
parameters. The second is the sum of the amount of space
required by the final value of the updated parameter referred to
as ?a and the amount of space for the rest of the program
represented by Fut_Sup_Di sp_Exp. From the second
quantity we subtract the displacement of a, since it was
accounted for in the current augmentation. Finally, we take the
max over the two items and show that it remains within the
overall bound.

The technique used in parameter passing naturally affects the
performance behavior of a procedure call. In the rule, we have
assumed a constant-time parameter passing method, such as
swapping [3]. An additional degree of complication is
introduced when an argument is repeated as a procedure call,
because extra variables may be created to handle the situation.
The present rule does not address this complexity.

4. AN EXAMPLE

In this section, we present a more comprehensive example of a
generic code segment, including appropriate expressions for
describing time and space. In our example, we reproduce
Stack Template concept from [18], where a detailed explanation
of the notation may be found:

Gary T Leavens
64

Concept Stack Template(type Entry;
evaluates Max_Depth: Integer);
uses Std_Integer Fac, String_Theory;
requires Max_Depth > 0;

Type_Family Stack O Str(Entry);
exemplar S;
constraints SO < Max_Depth;
initialization
ensuresS =A;

Operation Push(altersE: Entry; updates S: Stack);
requires OSO < Max_Depth;
ensures S = (#E) o #S;

Operation Pop(replacesR: Entry; updates S: Stack);
requires 0SO>0 ;
ensures#S =(R) o S;

Operation Depth_of(restores S: Stack): Integer;
ensures Depth_of = ([ISO);

Operation Rem_Capacity(restoresS: Stack): Integer;
ensuresRem_Capacity = (Max_Depth —[S[);

Operation Clear(clears S: Stack);
end Stack Template;

This specification is for a generic family of stacks whose entries
are left to be supplied by clients and whose maximum depth is a
parameter. It exports a family of stack types along with the
typical operations on stacks. Any given stack type is modeled as
a collection of strings over the given type Entry whose length is
bounded by the Max_Depth parameter.

In order to promote both component reuse and the idea of
multiple implementations for any given concept, our design
guidelines include the recommendation that concepts should
provide whatever operations are necessary to support whatever
type is being exported and operations that allow a user to check
whether or not a given operation should be called. In the stack
example both Push and Pop must be present because those are
the operations that define stack behavior. = The Depth_of and
Rem_Capacity enable a client to find out whether or not it is
alright to Push or to Pop. These are called primary operations.

Our guidelines suggest that secondary operations, ones that can
be carried out -- efficiently -- using the primary ones, should be
in an enhancement. An enhancement is a component that is
written for a specific concept. It can use any of the exported
types and operations provided in that concept. For example, we
might write an enhancement to reverse a stack. In it would be
an operation whose specifications indicate that whatever stack is
passed into the procedure is supposed to be reversed. Given
below is the functionality specification of such an enhancement:

Enhancement Flipping_Capability for Stack Template;
Operation Flip(updates S: Stack);
ensures S = #SR;
end Flipping_Capability;

65

The advantage of writing this capability as an enhancement is
that it is reusable, i.e., it will work for all Stack Template
realizations. For an example of a Stack Template realization, a
reader is referred to [18].

In our implementation, given below, we have included both the
code (it is purely generic since any realization of the given stack
concept may be used for the underlying stack type) and the
performance specifications that deal with time and space.

Realization Obvious F_C Realiz for
Stack Template.Flipping Capability;
Duration Situation Normal: OCpy, Cpo, Cig, Crr, Cais: R0 O

Cp, = LUB(Dur p,q,[EntryxStack]) and
Cp, = LUB(DuUT p,,[EntryxStack]) and
CIE = LUB(DUrIsiEmpty[StaCk]) and
CEI = DurEmry,Initialization and
Csis + Max_Depth[Cg; = DUI giek mitiatizations

Defn const Cy: R™ = (Cy + Cpy + Cpy);

Defn const Cy: R™ = (Dur cgi(1) + Cpy + Csjs + Cig + C.2);

Defn const Cnts_Disp(S: Str(Entry)): N =

(Y. Occurs_ Ct(E,S) ODisp(E));

E:Entry
Displacement Situation Normal: ODgp, Dgp: N O
Deip = DisPeniry.nit var @Nd
O S: Stack, Disp(S) = Dgp +
DgpdMax_Depth — [S]) + Cnts_Disp(S) and

O E: Entry, Disp(E) = Dg,p and
I's Nominal(Mnp_Dispp,,(E, S)) and
Is Nominal(Mnp_Dispp,(E, S)) and
I's_ Nominal(Mnp_Dispis gmpy(S));

Procedure Flip(upd S: Stack);
duration Normal: C,0#S| + Max_Depth[Cg; + C,;
manip_disp Normal: 2[Dgp + Dgp[{2[Max_Depth +
1 —|@S|) + Cnts_Disp(@S);
Var Next_Entry: Entry;
Var S_Flipped: Stack;
While= Is_Empty(S)
updating S, S_Flipped, Next Entry;
maintaining #S = S_Flipped®*-S and
Entry.ls Initial(Next_Entry);
decreasing IS|;
elapsed_time Normal: C,(JS_Flipped];
max_manip_space 2[Dgp + Dgp{2[Max_Depth
+1 = #S|) + Cnts_Disp(#S);

do
Pop(Next_Entry, S);
Push(Next_Entry, S Flipped);
end;
S :=: S _Flipped;
end Flip;

end Obvious F C Realiz;

In writing performance specifications, there is a trade-off
between generality and simplicity. Given that the space/time
usage of a call to every operation could depend on the input and
outputs values of its parameters at the time of the call, a general
version of performance specification can be quite complex. But
we can simplify the situation, if we make some reasonable

Gary T Leavens
65

assumptions about the performance of reusable operations.
While the performance specification language should be
sufficiently expressive to handle all possibilities, in this paper,
we present simplified performance expressions making a few
assumptions. ~ When the assumptions do not hold, the
performance specifications do not apply.

There may a variety of ways in which time and space are
handled, such as the straightforward allocation of space upon
declaration and immediate return upon completion of a block as
one method, and amortization as another. Here we use the term
Duration Situation followed by Normal to indicate the former.
A specification may also give performance behavior for more
than one situation.

We provide constants that represent durations for each of the
procedures that might be called, taking least upper bound when
those durations might vary according to contents. For example,
Durp,g, stands for the amount of time taken by a Push operation.
Since that might vary depending on the particular value being
pushed, the least upper bound is used to address that fact.

The way this approach allows the use of generic code is to have
specifications that can be given in terms of the procedures they
call. We think of initialization as a special procedure, one for
each type, that is called when a variable is declared. For
example, DU gyck mitialization Means the duration associated with
the initialization of a stack. We do not know nor do we need to
know what particular kind of stack will be used here, rather our
specifications are completely generic, allowing the specific
values to be filled in once a particular stack type has been
designated.

All of the constants at the beginning of the realization are
presented as convenience definitions so that the expressions
written in the duration and manip_disp clauses will be shorter
to read.

Just as we have identified what duration constants are needed
for specifying the duration of the reversing procedure, we also
set up definitions to make the storage (manip_disp) expression
shorter to read. We can now see how the duration and
manipulation displacement expressions associated with each
procedure can be used when scaling up and using those
procedures in a larger program.

In verifying the correctness of the procedure, for the loop
statement, the programmer supplies the following information:

* An updating clause that lists variables that might
be modified in the loop, allowing the verifier to
assume that values of other variables in scope are
invariant, i.e., not modified;

* A maintaining clause that postulates an invariant
for the loop;

* A decreasing clause that serves as a progress
metric to be used in showing that the loop
terminates;

* An €eapsed time clause for each situation
assumption in the duration specification to denote
how much time has elapsed since the beginning
of the loop; and

66

e A max_manip_space clause that denotes the
maximum space manipulated since the beginning
of the loop in any iteration.

The proof rule for while loop (not given here) checks that each
of the programmer-supplied clauses is valid and then employs
them in the proof.

In this short version of the paper, we have omitted discussion of
several important issues, including proof rules for loop
statements as well as other constructs. We have also not
explained how the system can accommodate dynamic and/or
global memory management, though the framework allows for
those complications. Finally, the non-trivial aspects of a
framework within which to discuss the soundness and
completeness of the proof system need to be presented.

5. RELATED WORK AND SUMMARY

The importance of performance considerations in component-
based software engineering is well documented [7, 19, 20, 21].
Designers of languages and developers of object-based
component libraries have considered alternative
implementations providing performance trade-offs, including
parameterization for performance [2]. While these and other
advances in object-based computing continue to change the
nature of programming languages, formal techniques for static
performance analysis have restricted their attention to real-time
and concurrency aspects [6, 10, 11, 20].

Hehner and Reddy are among the first to consider formalization
of space (including dynamic allocation) [4, 13]. Reddy’s work
is essentially a precursor to the contents of this paper, and its
focus is on performance specification. The proof system for
time and (maximum) space analysis outlined in [4] is similar to
the elements of our proof system given in section 2 of this paper.
Both systems are intended for automation. In verification of
recursive procedures and loops, for automation, we expect time
remaining and maximum manipulated space clauses to be
supplied by a programmer, though the need for the clauses is not
made apparent in the examples in Hehner’s paper. Our rules for
these constructs are, therefore, different. Other differences
include performance specification of generic data abstractions
and specification-based modular performance reasoning. This
becomes clear, for example, by observing the role of the
displacement functions in the procedure call rule in Section 3.

This paper complements our earlier paper on performance
specification in explaining how performance can be analyzed
formally and in a modular fashion. To have an analytical
method for performance prediction, i.e., to determine a priori if
and when a system will fail due to space/time limits, is a basic
need for predictable (software) engineering. Clearly,
performance specification and analysis are complicated
activities, even when compounding issues such as concurrency
and compiler optimization are factored out. Bringing these
results into practice will require considerable education and
sophisticated tools. More importantly, current language and
software design techniques that focus on functional flexibility
need to be re-evaluated with attention to predictable
performance.

Gary T Leavens
66

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the contributions of members of
the Reusable Software Research Groups at Clemson University
and The Ohio State University. We would especially like to
thank Greg Kulczycki, A. L. N. Reddy, and Bruce Weide for
discussions on the contents of this paper. Our thanks are also
due to the referees for their suggestions for improvement.

We gratefully acknowledge financial support from the National
Science Foundation under grants CCR-0081596 and CCR-
0113181, and from the Defense Advanced Research Projects
Agency under project number DAAH04-96-1-0419 monitored
by the U.S. Army Research Office.

REFERENCES

10.

Ernst, G. W., Hookway, R. J., and Ogden, W. F.,
“Modular Verification of Data Abstractions with
Shared Realizations”, |IEEE Transactions on Software
Engineering 20, 4, April 1994, 288-307.

Generic Programming, eds. M. Jazayeri, R. G. K.
Loos, and D. R. Musser, LNCS 1766, Springer, 2000.
Harms, D.E., and Weide, B.W., “Copying and
Swapping: Influences on the Design of Reusable
Software Components,” |EEE Transactions on
Software Engineering, Vol. 17, No. 5, May 1991, pp.
424-435,

Hehner, E. C. R., “Formalization of Time and Space,”
Formal Aspects of Computing, Springer-Verlag, 1999,
pp. 6-18.

Heym, W.D. Computer Program Verification:
Improvements for Human Reasoning. Ph.D.
Dissertation, Department of Computer and
Information Science, The Ohio State University,
Columbus, OH, 1995.

Hooman, J., Specification and Compositional
Verification of Real-Time Systems, LNCS 558,
Springer-Verlag, New York, 1991.

Jones, R., Preface, Proceedings of the International
Symposium on Memory Management, ACM SIGPLAN
Notices 34, No. 3, March 1999, pp. iv-v.

Leavens, G., “Modular Specification and Verification
of Object-Oriented Programs”, |EEE Software, Vol. 8,
No. 4, July 1991, pp. 72-80.

Leino, K. R. M., Toward Reliable Modular Programs,
Ph. D. Thesis, California Institute of Technology,
1995.

Liu, Y. A. and Gomez, G., “Automatic Accurate
Time-Bound Analysis for High-Level Languages,”

67

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Procs. ACM S GPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, LNCS
1474, Springer-Verlag, 1998.

Lynch, N. and Vaandrager, F., “Forward and
backward simulations-Part II: Timing-Based
Systems,” Information and Computation, 121(2),
September 1995, 214-233.

Muller, P. and Poetzsch-Heffter, A., “Modular

Specification and Verification Techniques for Object-
Oriented Software Components,” in Foundations of
Component-Based Systems, Eds. G. T. Leavens and
M. Sitaraman, Cambridge University Press, 2000.
Reddy, A. L. N., Formalization of Sorage
Considerations in Software Design, Ph.D.
Dissertation, Department of Computer Science and
Electrical Engineering, West Virginia University,
Morgantown, WV, 1999.

Schmidt, H. W. and Chen, J. Reasoning About
Concurrent Objects. In Proceedings of the Asia-
Pacific Software Engineering Conference, IEEE,
Brisbane, Australia, 1995, 86-95.

Sitaraman, M., and Weide, B.W., eds. Component-
based software using RESOLVE. ACM Software Eng.
Notes 19,4 (1994), 21-67.

Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B.
W., Long, T. J., Bucci, P., Heym, W., Pike, S., and
Hollingsworth, J. E., “Reasoning About Software-
Component Behavior,” Procs. Sixth Int. Conf. on
Software Reuse, LNCS 1844, Springer-Verlag, 2000,
266-283.

Sitaraman, M., “Compositional Performance
Reasoning,” Procs. Fourth ICSE Workshop on
Component-Based Software Engineering: Component-
Certification and System Prediction, Toronto, CA,
May 2001.

Sitaraman, M., Krone, J., Kulczycki, G., Ogden, W.
F., and Reddy, A. L. N., “Performance Specification
of Software = Components,” ACM S GSOFT
Symposium on Software Reuse, May 2001.

Szyperski, C., Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1998.
Special issue on Real-Time Specification and
Verification, |EEE Trans. on Software Engineeering,
September 1992.

Special section: Workshop on Software and
Performance, Eds., A. M. K. Cheng, P. Clemens, and
M. Woodside, |EEE Trans. on Software Engineeering,
November/December 2000.

Gary T Leavens
67

On Contract Monitoring for the Verification of
Component-Based Systems

Philippe Collet
Objects and Software Components Group

Laboratoire 13S - CNRS - Université de Nice - Sophia Antipolis
Les Algorithmes- Bat. Euclide B, 2000 route des Lucioles
BP 121, F-06903 Sophia Antipolis Cedex, France

Philippe.Collet@unice.fr

ABSTRACT

This position paper focuses on contract monitoring for com-
ponent interfaces, considering the verification of functional
and non-functional properties in the contracts. We inves-
tigate what properties are needed on behavioral and Qual-
ity of Service contracts. We also define what are the re-
quirements on a monitoring environment to handle properly
those contracts. We briefly transpose those requirements to
a meta-level architecture.

1. INTRODUCTION

The development of component-based systems intends to
deliver the beneficial effects that the object-oriented ap-
proach failed to completely provide: reuse of out-sourced
pieces of software and thus increased productivity. The def-
inition of component devised during the 1996 Workshop on
Component-Oriented Programming [1] is the following: “A
software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies
only. A software component can be deployed independently
and is subject to composition by third parties.”

In this definition, the specification process is clearly re-
lated to contractually specified interfaces. This position pa-
per focuses on the general notion of contract for components,
that is a component must expose functionalities, through its
functional contract, and its performances, using some non-
functional contract. More precisely, Beugnard et al [3] cat-
egorize contracts in four levels:

1. Syntactic contracts, that is signatures of data types.

2. Behavioral contracts, that is some semantic descrip-
tion of data types,

3. Synchronization contracts, which deal with concurrency
issues.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 2001 Philippe Collet.

68

4. Quality of Service (QoS) contracts, which encompass
all non-functional requirements and guarantees.

We consider it crucial to dispose of such contracts if we
want software components to behave like components from
other engineering domains. Moreover, software components
can certainly be the right software units to justify the ad-
ditional cost of using more formal approaches, as their life
cycle and their marketing strategies might be driven by qual-
ity. To create a real market of software components, appli-
cation developers must be capable of browsing, comparing
and choosing components [13] according to all their exposed
properties: an expression of services and quality of these ser-
vices is then obviously necessary. Those specifications must
then be verified one way or another.

Consequently we believe that the specification and verifi-
cation of component-based systems must take into account
those four levels of contract from the start, to provide a
broad and consistent framework to handle those different
kinds of properties. As we also believe that expressive for-
malisms are needed to support the contractual approach,
we base our work on the hypothesis that it is not possible
to fully verify statically that such contracts are never vio-
lated. The runtime enforcement of those contracts together
leads to specific monitoring problems as a straightforward
combination of separate contracts monitoring would inter-
fere with each other. A specific monitoring framework is
needed to handle all kinds of contract and we consider that
an appropriate meta-level architecture must be defined to
provide such a framework.

In this paper, we investigate what properties are needed
on contracts, by considering two specific levels, behavioral
and QoS. We define the global contract which consists of the
combination of the four levels. We describe what are the re-
quirements on a monitoring environment to handle properly
those contracts. We briefly transpose those requirements
to a meta-level architecture, both in its design and in its
implementation.

2. SPECIFICATION OF BEHAVIORAL AND
QOS CONTRACTS

In this paper, we only focus on the behavioral and QoS
contracts. The first level of contract corresponds to type
signatures, and type checking is usually performed stati-
cally. The synchronization aspects of contracts still need

Gary T Leavens
68

to be studied in a general enough component framework, as
concurrency issues are often reduced to the means of com-
munication of a given connector of a component.

2.1 Behavioral Contract

Several specification techniques can be envisaged to spec-
ify the behavioral semantics of component interfaces. Cur-
rently the contractual approach based on preconditions, post-
conditions and invariants is promoted as a pragmatic but
valuable specification technique for components. Current
component frameworks are based on, or at least promote,
OO programming languages. The majority of those OO
languages provide only the first level of contract, but there
are languages, such as Eiffel [12], that inherently incorporate
behavioral contracts with preconditions, postconditions and
invariants. Many extensions to existing languages with be-
havioral contracts, such as iContract [10] or JML [11] for
Java, have also been designed.

Szyperski [14] showed that behavioral contracts based on
pre and postconditions have several drawbacks related to
call-backs and re-entrance. Nevertheless, we believe it still
constitutes the best trade-off between expressiveness and
ease of comprehension by an average developer.

However, there are two different specification approaches
for those behavioral contracts:

e The first one can be qualified as language-based specifi-
cation, as the contract expression is a boolean expres-
sion of the annotated language, usually using all the
functional features (access to fields, method calls, ba-
sic types and operations) with some specific operators
to refer to previous states (old, @pre), to the result of
the annotated function (result), etc. The main refer-
ence is the Eiffel language [12], even if more expressive
assertion language have been proposed [10], with the
addition of quantification operators for example.

This approach suffers from its reuse of the annotated
language, as it is often hard to provide a complete for-
mal semantics for the assertion language, as the un-
derlying programming language does not provide one
either. Despite this problem, this approach is open
to partial specification, fits well with subtyping and is
well understood by developers.

Moreover, recent work [7] provides a sound framework
for behavioral contracts based on pre and postcondi-
tions. This theory [6] brings soundness regarding in-
heritance and interfaces in the context of the Java pro-
gramming language. But this theory is applicable to
many other cases.

e The other approach relies on model-based specifica-
tions [4], that is the annotations that make up the
contract are stated in terms of a mathematical model
of the states of objects. This kind of specification usu-
ally enables static analysis and theorem proving, as
they are based on an algebraic style. However, as the
expressiveness of the language increases, proofs are no
longer possible. Moreover, this kind of specification
is hard to understand by developers as they are not
trained or used to think in such a way.

A somewhat hybrid approach is now developed : JML
(Java Modeling Language) [11] restricts the use of mod-
els to model fields and reuses as much as possible the

69

Java syntax and semantics for basic operations in the
assertion language (access to fields, method calls, ba-
sic operators, etc.). JML also provides very interesting
features with the separate specification of normal and
exceptional behaviors, quantification operators and re-
finement of the specification models!. The runtime en-
forcement of some parts of the contract is also possible.
As a result, JML provides a well-founded basis from
the start, trying to be closer to developers.

Both approaches have advantages and drawbacks, and are
trying to eliminate their respective disadvantages: theoret-
ical work is done in the language-based approach, practical
issues motivate work in the model-based approach. One can
hope that the approaches will merge or that one approach
will reuse and adapt all beneficial aspects of the other one.

In the meantime, it must be noted that both JML and
language-based contracts systems lead to the same kind of
runtime monitoring systems, which will be shown to inter-
fere with other contract levels.

2.2 QoS Contract

Regarding QoS, contracts have been investigated in the
world of distributed objects and components systems. Soft-
ware components, in the broad sense, must be able to ex-
pose many different non functional properties, such as per-
formance, reliability, policies related to persistence, transac-
tions or security. Apart from the properties that are usually
provided by the container — or context —, designing a QoS
contract system expressing time and space performance in
function of some resources usage seems quite challenging, as
many aspects must be taken into account.

The complexity of algorithms can be easily related to an
order using the O notation on both the average and worst
cases. Both cases are likely to be relevant for a software
component. But this notation expresses complexity bounds,
independent of any deployment platform, so these formulas
need to be related to absolute bounds [14], showing some
real figures. In addition to the issue of comparing perfor-
mance, contracting QoS leads to the problem of handling
negotiation and renegotiation.

To our knowledge, no QoS contract language or system
expresses and verifies performance issues based on input pa-
rameters and resources usage, but QML (QoS Modeling Lan-
guage) [8] looks like the most advanced QoS specification
language. In QML, the QoS specification is made of three
mechanisms: contract type, contract and profile. Contract
type are QoS aspects, such as performance or reliability. A
contract is an instance of a contract type and a profile asso-
ciates a QML contract with an interface. The QoS aspects
that can be represented in QML are quite powerful, with dif-
ferent domains of value, constraints and even statistics on
measured values over a period of time. However QML does
not provide any means to express a QoS contract according
to some parameters that would come from the component
interface, e.g. to specify a time constraint in relation with
the size of an input data structure. Moreover resources con-
sumption cannot be specified. QML contracts are made of
constraints on domains of values, and a contract can refine

1JML also provides a when clause, which can be seen as part
of a level 3 contract on synchronization: if a method is called
and its preconditions hold, the call will wait until the when
clause holds as well.

Gary T Leavens
69

another one by adding constraints or putting stronger con-
straints on an already constrained domain. Each kind of
constraint that can be defined in QML must specify a to-
tal order among its values. A conformance relation is then
defined between the contracts.

Monitoring QoS is not considered in QML [8], but similar
QoS oriented approaches monitor some properties at run-
time by configuring the middleware, or by using meta-level
mechanisms [2]. As some categories of QoS can involve per-
vasive monitoring, like security in Java [5], interferences be-
tween the separate QoS monitoring already proposed would
certainly occur. As general-purpose QoS specification for-
malisms are likely to be proposed, a contract monitoring en-
vironment must be carefully designed to enable to express
the correct combination of each corresponding monitoring
process. It must be also kept open enough to take into
account the possible new features. The environment must
also handle the case of partial conformance between QoS
contracts or during monitoring, e.g. a time constraint is re-
spected but a space constraint is not. Different policies are
then applicable: termination, renegotiation, etc. The same
problem arises on the global contract, as described in the
next section.

2.3 Putting Contracts Together

Considering all four levels together (type, behavior, syn-
chronization, QoS), a proper combination can be determined
in order to provide a global contract. The general specifica-
tion can simply be done separately in each contract formal-
ism and the conformance rule of this global contract is the
conjunction of all conformance rules. However, it is also im-
portant to consider the case where some partial conformance
is achieved, which typically leads to contract renegotiation
in QoS-aware systems. Different actions regarding the con-
tract can be started:

e Termination if the QoS contract is considered as too
important to be renegotiated.

e Renegotiation of the QoS contract with weaker con-
straints (e.g. a 3D component cannot provide a 30
frames/s rate and the new QoS contract asks for 25).

e Withdrawal of the QoS contract, getting back to a
purely functional best-effort approach.

e Renegotiation of the functional contract and possibly
of the QoS contract (e.g. the same 3D component
is asked to lower its resolution and may be asked to
maintain the 30 frames/s rate).

Consequently the combination of all contracts must be pro-
vided with the addition of dynamic negotiation capabilities,
which can be taken for example from the QoS formalism.

2.4 Monitoring Issues

Monitoring at runtime needs a proper support so that a
specific contract monitoring does not affect another moni-
toring process at a different level. For example, behavioral
and QoS monitoring can interfere if the monitoring code
that evaluates assertions create new objects when the QoS
is monitoring space occupancy. In the same way, the time
spent in monitoring must not be taken into account in pro-
filing time, unless explicitly specified. Consequently, mon-
itoring behavioral contracts must be done in a framework
that will not interfere on any other contract level:

70

e by not adding new types in the type hierarchy;

e by not modifying the program behavior in relation to
synchronization;

e and finally by not consuming any time or space!

Even if the first property can be achieved by modifying all
the methods that give access to type information, it is not
feasible to completely achieve the second and third proper-
ties. Nonetheless, the monitoring environment must strive
for minimizing the effect of the observer on the observed
phenomena.

3. REQUIREMENTS FOR
MONITORING CONTRACTS

In order to provide an appropriate framework to monitor
all kinds of contract, we propose exposing the necessary con-
cepts that are manipulated by behavioral contract systems.
In the same way, we expect to describe an open enough
framework for QoS monitoring, so that the monitoring pro-
cesses can be manipulated and composed at the global level.

3.1 Behavioral Contract Monitoring

The monitoring technique for such contracts consists in
checking the appropriate preconditions at the entry of a
method, the postconditions and invariants at the exit. Defin-
ing what are the appropriate assertions, i.e. the semantically
correct ones, to be monitored on a given object at runtime,
according to inheritance, subtyping and implemented inter-
faces [6] is considered as out of the scope of the monitoring
process. We present a list of requirements on the monitoring
system:

e The integration of the contract enforcement code with
the normal code must not create new visible classes or
methods — wrapping asserted methods is a common
way to integrate assertions —. KEven if programmers
can be told not to use these, any tool that uses the
modified class will consider them as normal unless cor-
rectly hidden or specified. Avoiding a pervasive inte-
gration is also important for the deployment footprint,
which could be constrained in a QoS contract.

e Specific data structures and code are usually necessary
to manage the integration, to avoid non-termination of
assertion checking due to recursion, to provide asser-
tion triggering at a fine-grained level (class or object)
and to make the checker thread-safe!

e All accesses to instance fields and all method calls that
are made to evaluate an assertion are recorded as such,
i.e. not counted in time measurement.

e All created objects during any evaluation are excluded
from space measurement.

e The synchronization policies and behaviors normally
defined for the component should not be modified.
How this can be achieved, totally or partially, remains
an open question. However, the sketched framework is
expected to be able to design and experiment proper
solutions.

Gary T Leavens
70

The assertion languages always provide enhancements to
boolean expressions in order to increase expressiveness. The
most common ones are studied in relation to the monitoring
issues:

e Quantification operations (V, 3), or more generally
higher-level functions, need to be translated to the un-
derlying language, thus generating extra code and new
functions. That boils down to the first side-effects pre-
sented above.

e Access to the result of the annotated function usually
generates side-effects because of methods wrapping or
any other techniques used to provide this feature.

e Reference to the previous state of objects in the spec-
ification of procedures (old, @pre) is usually done by
generating local variables that keep references or val-
ues of the concerned variables by computation at the
method entry. They are later referenced at method
exit. This additional code generates side-effect. This
is also the same for the let construct, which is used
to avoid repetitions in assertions.

All the prototyped approaches that have been proposed so
far generates all, or almost all, side-effects listed above. That
includes approaches based on source to source processing,
bytecode adaptation, compile-time or runtime reflection and
aspect-based processing.

3.2 QoS Contract Monitoring

As a proper general QoS specification language is not
available, we infer some principles on how to monitor QoS.
Taking QML as an example, the monitoring would be based
on time measurement and appropriate recording to com-
pute necessary values and statistics. QoS in general would
be based on measurement of many parameters, to compute
results ranging from simple constraints to complex function
of several parameters, such as time and space requirements
together with dependencies on available resources, size of
input data, etc.

Consequently, the computation of these results needs to
be semantically correct, that is:

e without any interference from other contracts, and ac-
tually, without any interference coming from the com-
ponent surrounding, such as the services provided by
the container.

e at the appropriate times. Considering the method call
as the essential point of contracting, the monitoring
environment can be kept open by reusing the fine-
grained model of aspect-oriented programming [9] to
consider the following events: before the method call
(client side), at the method entry (provider side), be-
fore the exit (provider side), just after the method call
(client side). A distinction can also be made between
the method call and the effective method execution
(late binding).

3.3 Requirements for an appropriate meta-
level

Monitoring behavioral contracts can be seen as an aspect
in the sense of aspect-oriented programming [9]. Monitoring
some QoS properties in middleware has been done through

71

message reflection [2]. Consequently we consider that the
monitoring of all forms of contracts must be done in a ap-
propriate meta-level framework supporting message inter-
ception, as contracts are mainly monitored on method calls.
However this meta-level must satisfy strong constraints, as
it must provide a clear separation between the normal be-
havior and other aspects, so that monitoring of contracts
can be as transparent as possible to the semantics and to
QoS for the client.

We believe that this transparency can be achieved by
defining a minimal set of interactions between the two lev-
els, taking into account low-level issues such as object al-
location. At the meta level, the careful implementation of
the specific contractual constructs we have described is ex-
pected to enforce transparency as well. The main issue of
such a framework will certainly be performance, as both
levels will need to act as almost separate execution environ-
ments. The implementation of a prototype to experiment
these ideas has begun. It uses a language-based specifica-
tion language for Java, OCL-J, which adapts the Object
Constraint Language of UML to the Java programming lan-
guage. The developed prototype is intended to use the Java
Platform Debugging Architecture (JPDA), as this architec-
ture provides a framework that is close in some points to
our requirements. We expect these experiments to provide
feedback on how to properly design the interactions between
the base and the meta levels, as well as new insights in the
area of contract monitoring.

4. CONCLUSION

In order to provide quality software components, the spec-
ification and verification of component-based systems must
take into account both the functional and non-functional
contracting of interfaces. By considering a global contract
merging all kinds of contracts, we showed that renegotia-
tion of QoS contracts must be supported and that different
monitoring codes must be aware of each other and must not
interfere. Consequently we argue that contract monitoring
must be handled globally inside a meta-level that clearly
separates the base level and the meta-level in all functional
and non-functional aspects.

5. ACKNOWLEDGMENTS

Thanks to Jacques Malenfant for discussions on non-functional

contracts and for pinpointing the QoS specification language
QML.

6. REFERENCES

[1] International Workshop on Component-Oriented
Programming (WCOP’96), 1998.

[2] M. Aksit, A. Noutash, M. van Sinderen, and
L. Bergmans. QoS Provisioning in Corba by
Introducing a Reflective Aspect-Oriented Transport
Layer. In 1st ECOOP Workshop on Quality of Service
in Distributed Object Systems (QoSDOS 2000), 2000.

[3] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and
D. Watkins. Making Components Contract Aware.
Computer, 32(7), July 1999.

[4] Y. Cheon and G. T. Leavens. A Quick Overview of
Larch/C++. Journal of Object Oriented
Programming, 7(8):39-49, Oct. 1994.

Gary T Leavens
71

[5]

[6]

[9]

[10]

U. Erlingsson and F. B. Schneider. IRM Enforcement
of Java Stack Inspection. In IEEE Symposium on
Security and Privacy, Oakland, California, May 2000.
R. B. Findler and M. Felleisen. Contract Soundness
for Object-Oriented Languages. In Proceedings of
OOPSLA 2001, 2001.

R. B. Findler, M. Latendresse, and M. Felleisen.
Behavioral Contracts and Behavioral Subtyping. In
Proceedings of Foundations of Software Engineering
(FSE’2001), 2001.

S. Frolund and J. Koistinen. Quality of Service
Specification in Distributed Object Systems Design.
Distributed System Engineering, December 1998.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An Overview of
AspectJ. In Proceedings of the 24th European
Conference on Object-Oriented Programming
(ECOOP’2001), Lecture Notes in Computer Science.
Springer Verlag (Berlin), 2001.

R. Kramer. iContract - the Java Design by Contract
Tool. In M. Singh, B. Meyer, J. Gil, and R. Mitchell,
editors, International Conference on Technology of
Object-Oriented Languages and Systems (Tools 26,
USA’98), IEEE Computer Society Press (New York),
1998.

G. T. Leavens, A. L. Baker, and C. Ruby. JML: A
Notation for Detailed Design. In H. Kilov, B. Rumpe,
and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175-188. Kluwer, 1999.
B. Meyer. Object-Oriented Software Construction. The
O-O series. Prentice Hall Inc. (Englewood Cliffs, NJ),
2nd edition, 1997.

H. L. Nielsen and R. Elmstrom. Proposal for Tools
Supporting Component Based Programming. In
Fourth International Workshop on
Component-Oriented Programming (WCOP’99), 1999.
C. Szyperski. Component Software — Beyond
Object-Oriented Programming. Addison-Wesley
Publishing Co. (Reading, MA), 1998.

72

Gary T Leavens
72

A Framework for Formal Component-Based

Software Architecting
M.R.V. Chaudron, E.M. Eskenazi, A.V. Fioukov, D.K. Hammer
Department of Mathematics and Computing Science, Technische Universiteit Eindhoven,
Postbox 513, 5600 MB Eindhoven, The Netherlands

+31 (0)40 — 247 4416
{m.r.v.chaudron, e.m.eskenazi, a.v.fioukov, d.k.hammer}@tue.nl

ABSTRACT

The assessment of quality attributes of software-intensive systems
is a challenging issue. This paper outlines a method aimed at
quantitative evaluation of certain quality attributes that are
important for embedded systems: timeliness, performance and
memory consumption.

The paper sketches out the key principles for building a formal
model for evaluating quality attributes: (1) Dependability
constraints are specified in an end-to-end fashion; (2)
Components are attributed with resource demands; (3)
Specification of component interaction is separated from
specification of component behavior.

The method is aimed to be applicable in practice. Therefore we
investigate combining widely used software modeling notations
with existing formal methods. In particular, the proposed
approach combines Message Sequence Charts and Timed
Automata. We illustrate the approach with an example.

Categories and Subject Descriptors
D.2.11 Software Architectures; D.2.4 Software / Program
Verification

General Terms
Performance, Design, Reliability, Verification.

Keywords
Component-based software, software architecture, quality
attributes, architecture evaluation, timeliness, memory

consumption, formal methods.

1. INTRODUCTION

Nowadays, more and more “intelligent” devices contain
sophisticated embedded software to fulfill a broad scope of
functions. As more devices are developed, the scope of functions
to be implemented must be broader. This growing complexity
complicates the development of embedded software. Thus, new
approaches for software development are heavily needed.

To reduce development cost and development time, the reuse of

73

existing solutions is vital. For this purpose, the construction of
software with reusable components is highly desirable. This
method of software development requires techniques for assessing
the composability of components. This assessment can be done
reasonably well for the functional aspects of components, but no
adequate techniques exists for analyzing composability of non-
functional ones.

The possibility to estimate relevant quality attributes in the early
development phase is crucial. These kinds of predictions will
reduce the risk of developing non-competitive, infeasible or
flawed products. Thus, for quantitative software architecting a
formal mathematical basis is needed.

Most contemporary architecting approaches deal only with the
functional aspects of software. But, there are also non-functional
quality attributes, a typical example being dependability quality
attributes: performance, timeliness, reliability, availability, safety,
and security. These attributes emerge as a result of collaborative
functioning of all parts, which a system is built from, and they can
make a significant impact on the entire architecture.
Consequently, one of the most important issues in software
architecting is dealing with quality attributes.

Many modern techniques for software evaluation use expert-based
approaches (e.g. ATAM [4], SAAM [1]) which evaluate overall
quality of the architecture. The quantitative methods used in these
approaches are applied in an ad-hoc manner and, in many cases,
are too context-oriented to be generalized. As a consequence, it is
difficult to make the architecting process reliable, predictable,
and repeatable.

For the time being, architecting is still more an art than an
engineering discipline. Substantial efforts have to be invested in
making the architecting process more rationalized and precise.
One of the ways to make the architecting process more precise is
the use of formal methods. However, formal methods are not a
silver bullet; they have their own drawbacks. One should be aware
that the application of formal methods usually requires precise
and complete specification. In many cases, an architect does not
have this information. He or she may not even be interested in a
very detailed design at the early stages of design, but prefer to
postpone design decisions to later stages. Thus, a balance between
the architect's freedom of design and the precision of analysis and
specification should be found. Note, accuracy of a specification is
not always a drawback, as it also stimulates one to think more
accurately and systematically.

Gary T Leavens
73

Support by automatic tools could be very helpful for architects.
However, tooling usually requires strict non-ambiguous semantics
of the models being processed; thus, formal methods are also
essential here.

There exist no general approaches for evaluating non-functional
properties of a system at the architectural level. The interesting
approach combining structural description of architecture (Darwin
Architecture Description Language) with behavioral description
of components (Labeled Transition System) was proposed in [8].
However, this approach only allows checking safety and liveness
properties, but it does not model timing aspects which are needed
for the analysis of quality attributes like timeliness and
performance. Also, the existing methods for quantitative
evaluation focus on one quality attribute only.

We aim to integrally model multiple quality attributes—timeliness,
performance, and memory consumption—to support the making of
architectural design trade-offs.

1.1 Requirements on the Method

The aim is to develop a method for supporting software architects
during early stages of component-based software architecting of
resource-constrained systems. It is necessary to find suitable
techniques for architecture description and methods for quality
attributes evaluation and to merge them into an integrated
framework.

The requirements on the method are the following:

1. Compositionality of resource-constraint systems. The
methodology should be compositional. This means that quality
attributes of a composite system can be calculated from the
constituents components and composition mechanisms. In
particular, the method should focus on predicting quality
attributes based on resource consumption of the components.

Even if the functional interfaces and the interaction mechanisms
of components are precisely specified, component composition
may not function properly because non-functional properties of
the entire system were not considered beforehand. Typical
instances of this problem are resource conflicts (e.g., race
conditions, conflicts on access to shared resources etc). These
conflicts make it difficult to ensure the proper and predictable
behavior of a system in advance.

2. Dependability assessment during the early development
phases. The dependability attributes (timeliness, performance,
reliability, availability, safety and security) of component-based
systems cannot be evaluated by the current approaches. So, the
method must help architects to estimate the dependability
attributes and ensure a certain level of estimation accuracy. As a
simple example, the results can be described in terms of worst-
case and best-case estimations.

Also, there are non-technical requirements on the method. In
order to be easily comprehensible and easy to learn by software
engineers, the method should be based on widely accepted
software specification and design techniques. These techniques
should make engineer’s work more efficient after the engineer has
gained some experience with them.

74

2. KEY PRINCIPLES FOR COMPONENT-

BASED ARCHITECTING

Component-based architecting (e.g., see [15] and [21]) is one of
the most promising approaches for managing complexity and
boosting reuse. However, current component-based approaches do
not address the behavioral and non-functional aspects of software.
Therefore, we propose the following extensions.

Explicit specification of component behavior and interaction. A
formal specification of the dynamic aspects of components and
their interaction is necessary for reasoning about the behavior of
their composition and its non-functional properties.

Support of hierarchical component description. A component can
be either atomic or compound. The atomic component cannot be
further subdivided, but the compound component can consist of
atomic and(or) other compound components. As a result, one has
more flexibility in choosing the unit of the reuse: either a single
atomic component or an entire package. Another advantage is the
possibility to apply compositional design approach at the different
levels of hierarchy: a system is composed from subsystems;
subsystems are composed from compound components etc.

Separation of component interaction from component behavior.
The description of behavioral aspects is structured in separate
parts. There are specifications of component behavior and
specifications of component interaction. A rationale for
independent specification of the interaction relationships is
presented in [2]. We identified the following additional reasons
for this separation:

1. Genericity/Tailorability: The interaction specification
may be used to tailor the behavior of generic
components to particular context. This helps to avoid
coding of context-driven aspects within components
and, hence, allows more general component designs.

2. Specifying constraints end-to-end: Dependability
constraints are often concerned with the end-to-end
interaction between components. Having a separate
specification of the interaction constitutes a better
means for structuring the specification than the
alternatives: (1) placing constraints at one of the
components involved or (2) dividing up an end-to-end
timing constraint over multiple components.

3. Loose coupling: In existing component models the way
that a component is intended to interact with other
components is programmed into a component
(endogenous binding). This has to change if the
behavior of other components changes. Hence, it
constitutes a dependency on the behavior of other
components. By specifying interaction separately
(exogenously), this dependency is avoided.

Explicit specification of the resource requirements of components.
The dependability of a system is related to the amount of
resources consumed by the components and provided by the
execution platform. There are three types of resources:
computation resources, communication resources and storage. The
definition of component resource requirements in a platform-
independent way broadens the scope of component application.

Specification of dependability constraints in an end-to-end
fashion. The basic idea is that timing and dependability

Gary T Leavens
74

constraints should not be component attributes, because this
would jeopardize reusability. They are rather considered as
constraints on the dynamics of the system, i.e. on the component
interaction.

Distinguish resource constraints and resource consumption. The
former are described at the overall system level in an end-to-end
fashion, and the latter is associated with a component description.
This separation enables the development of reusable components
and gives designers freedom in the satisfaction of the resource
constraints.

All the aforementioned aspects have to be properly elaborated in
order to constitute a practical method.

3. ARCHITECTING ENVIRONMENT

To reconcile the goals of using accepted software engineering
notations and automated analysis tools, we aim for a framework
that consists of three parts (see Figure 1).

Extensions e N RPVAN T = . fix:izzi?q:g
for specifying) . Regular Temporal | i L Timed ST 1yl

behaviour | ‘Expressions’ Logic { OCL (| Automata . msc ; interactions
constraints | . R g - L - and timing
constraints

T

Timed Automata Basic

(UPPAAL notation +extensions) formalism
Analysis Verification Simulation Evaluation

Figure 1. Architecting environment

The architecting environment provides engineers the possibility to
use a combination of notations for describing architectures. For
the time being, we focus on Message Sequence Charts (MSC)
[20] and Timed Automata (TA) [3]. Also, the architecting
environment is to be extendible with other notations, such as the
Object Constraint Language (OCL) [24] or temporal logic.

For analyzing architectural designs, the different notations need to
be related. To this end, we devise mappings of notations onto a
basic formalism. In our approach, Timed Automata are used as
basic formalism. We do not expect to find mappings of all
constructs of all modeling notations onto a single basic modeling
formalism. In co-operation with engineers, we have to select
subsets of the notations that comprise the most important
modeling constructs, yet also provide the information needed for
automatic analysis.

To support different types of analyses we envisage a collection of
analysis tools such as schedulability-, simulation- or verification-
tools. These tools operate on the representation of the
architectural design in terms of the basic formalism.

75

4. ARCHITECTURE DESCRIPTION
TECHNIQUES

This section enumerates the requirements on architecture
description techniques and outlines the framework. Also, it
contains an example to illustrate the method proposed.

4.1 Requirements for description techniques
For specifying component behavior, a number of formal
description techniques were inspected and compared. Before the
actual comparison, essential requirements on the description
techniques were identified. These requirements and their rationale
follow below. The requirements are marked as compulsory (C) or
optional (O).

1. The description techniques should support quantitative
models for timeliness analysis. (C)

Rationale: to enable timeliness assessment at the early
architecting phase, before system implementation.

2. The description techniques should support quantitative
evaluation of memory consumption. (C)

Rationale: to enable memory consumption estimation at the
early architecting phase.

3. The description techniques should support specification of
timing constraints in an end-to-end fashion. (C)

Rationale: to avoid unnecessary reduction of design space
(caused by artificial subdivision of the initial deadlines).

4. The description techniques should support the possibility to
specify interaction behavior exogenously (C).

Rationale: to increase reusability of the components and to
build flexible architectures.

5. The description techniques should allow one to reason about
the properties of a component composition, based on the
properties of the components. (C)

Rationale: To enable effective (automated) formal reasoning.

6. The description techniques should support the specification
of resource requirements (processing, storage and
communication. (C)

Rationale: to enable analysis of effects of resource conflicts.
7. The specifications must be comprehensible for engineers (C).
Rationale: reduce efforts for education of engineers.
8. Support for automatic code generation (O).

A description technique should enable creating of tools that
can generate code for a given specification.

Rationale: to enable efficient development.

9. Use of existing design, simulation and verification tools (O).
It is preferable to use the existing tools instead of developing
new ones.

Rationale: to design the software quickly and easily.

4.2 Basic formal framework

In this section we explain the architecting approach by listing the
models that should be constructed for describing an architecture.
We motivate the choices of the formal description techniques for
these models.

Gary T Leavens
75

4.2.1 General view

A general overview of the approach to modeling architectures is
given in Figure 2. Three essential architecting models are
considered.

The “Structural model” represents the static configuration of a
system through the dependencies and connections between
components.

The “Behavioral Model” is used to describe the dynamic aspects
of the components, component interaction and resource
constraints (e.g. end-to-end deadlines). A component description
specifies resource requirements in terms of the “Resource Model”.

The “Resource model” describes the available resources. This
model also defines a sharing strategy for each resource.

Structural model Behavioural model

Specify end-to-end constraints

Resource
model

Resource 1 Resource 2

Figure 2. Overview of the approach

4.2.2 Choice of appropriate formalisms

For structural description we consider one of the existing
component models supporting the notions of provided and
required interfaces (e.g. Koala [19] and Darwin [18]). Since we
aim to the evaluation of timing properties, the proper behavioral
description formalisms are to be found.

After comparing several formalisms, the extended notion of State
Machines (Timed Automata, [3]) was chosen for the specification
of component behavior. Basic Message Sequence Charts [20]
were chosen for specifying component interaction. This section
motivates this choice.

4.2.2.1 Timed Automata
Timed Automata are supported by a wide scope of existing tools
for modeling and simulation (e.g. UPPAAL, for details see [6]).
Furthermore, their graphical description makes them
comprehensible for engineers.

The theory on Timed Automata describes constructions for
obtaining an automaton that describes the behavior of the parallel
composition of timed automata. For the simplest cases, it is
possible to use the Cartesian product.

However, when using timed automata, certain principles must be
followed in order to be able to reason compositionally. For
example, one should not use global clock variables to define
constrains on the behavior of multiple components.

76

4.2.2.2 Message Sequence Charts

As mentioned before, component interaction is specified
separately from component behavior. For that, a specification
language is required that can address the following issues:

e [t should enable restricting the behavior of generic
components

e [t should support the specification of timing constraints
in an end-to-end fashion.

The MSC notation allows one to vividly express timing
constraints between stimulus and response events at a single place
in a specification. This is in contrast to timed automata, where
timing constraints are specified by means of two (or more)
constraints on shared clock variables that are distributed over
separate states or transitions of the model (this will be illustrated
later by an example). This reduces the intelligibility of a
specification.

MSC are a well-accepted software notation that is easy to learn
and understand. Also, they have formal semantics in terms of
automata (see e.g. [14]) that makes it possible to relate them to
timed automata (which we use as basic formalism).

Because of the above advantage, MSC were preferred to Timed
Automata for specifying the timing constraints.

4.3 Example

To give a flavor of our approach, we will demonstrate some of the
description principles (analysis is not included) with an example
of an “Automatic Teller Machine™.

The structural model of the architecture is depicted in Figure 3.

ATM Bank

User

Figure 3. Key components

The system consists of the following components: User, ATM
(modeling a cash dispenser), and Bank (modeling some aspects of
bank operation). User and Bank interact only with ATM, but not
with each other.

The behavioral model consists of a specification of the behavior
of the individual components using UPPAAL and a specification
of their interaction using MSCs.

We briefly explain the UPPAAL notation [6]. In UPPAAL, time
is modeled wusing clock variables: timing constrains are
expressions over clock variables. These constraints can be
attached both to transitions and states. A condition on a state is an
invariant, the system is allowed to be in a state only if its
invariant holds. A condition on a transition is a guard; the
transition can only be taken if the guard holds.

The labels on transitions denote events. Labels with a question
mark “?” define input events; labels with an exclamation mark “!”
define output events.

Returning to the example, Figure 4 describes the behavior of
User.

Gary T Leavens
76

Idle _u.insert card! _ u.enter PIN!

Authorization

u.PIN
validated?

QO

u.enter
amount!

invalid?

\fu.accept\s Checking

u.success? amount? amount

Figure 4. Behavior of User

The specification of User describes the behavior of an individual
who wants to withdraw cash from an ATM. The automaton
defines an order on the events for the withdrawal process.

The behavior of ATM and Bank is illustrated in Figure 5 and
Figure 6, respectively.

I a.insert a.enter
e@ card? /" PIN? f) t<s
</ =07\l
a.eject card! t1>q| @ validate
PIN!
a.PIN invaliMnon- \

authorized?| a.authorized?
a.withdraw? CS
g? a.fail! a.PIN
a.cancel?)
a.success! validated!

t2>=3 5.1y a.enter

:.at;?nk amount?
2>=3
Perform @ 2> Checking
transaction— a.bank a.accept amount
transaction! amount! (2<6

Figure 5. Behavior of ATM

For the specification of Bank we use two automata. The semantics
of this is that they operate in parallel. This allows further
enhancing of the specifications to support more than one User and
one ATM: the unnecessary serialization of the authorization and
transaction requests from different cash dispensers, which would
be enforced by modeling the behavior as a single automata, is
avoided.

77

b.non-authorized!

x>=1 x>=1

Validating
Idle
b.bank veto! b.bank fiat!
y>=2 y>=2

Transaction

y<4

Figure 6. Behavior of Bank

We use clock variables x and y to specify the resource
consumption of Bank. The specification states that the time of
processing authorization requests (by a hypothetical CPU) is at
least one time unit and at most two time units. The former is
indicated with the guards (x>=1/) on both transitions, and the
latter is specified with the invariant (x<2) of the “Validating”
state. Likewise, the time necessary for performing a transaction is
at least two time units but at most four time units. Similarly, one
can specify consumption of CPU capacity for other components.

Finally, we demonstrate the specification of end-to-end timing
constraints and the interaction between the components User,
ATM, and Bank with the Message Sequence Chart in Figure 7.

On the one hand, the message sequence chart in Figure 7 specifies
through which transitions all the three automata interact. For
example, to indicate that the actions “u.insert card” and “a.insert
card” of User and ATM, respectively, need to synchronize, we use
an ampersand symbol “&”. Likewise, the other labels of all the
three automata are bound. This type of specification technique
allows one to bind components in an exogenous manner.

Additionally, this message sequence chart indicates that the time
between the occurrence of “enter PIN” and the occurrence of
“PIN validated” must not exceed five time units. At the same
time, it indicates that time between “enter amount” and
“transaction success” must not exceed six time units. In a similar
way, message sequence charts can be used to specify other
dependability constraints in an end-to-end manner for relevant
execution scenarios.

Gary T Leavens
77

msc Cash_withdrawal_scenario
User ATM Bank
\ \ \ \ \
u.insert card&
a.insert card >
[0,5] u.enter PIN&)
’ a.enter PIN a.validate PIN&
A > b.validate PINV
§ Validating D
| u.PIN validated&
! a.PIN validated « -
\ 2D a.authorized&
] b.authorized
u.enter amount&
[0.6] a.enter amoun
‘ Ll
D Checking
amount
faccept amount&
a.accept amount d
u.bank transaction&
b.bank transaction
Transaction D
Y la - .
u.success& abb;::kﬁf?;f‘
a.success :
" u.withdraw&
. a.withdraw
h u.eject card&
a.eject card
I I]

Figure 7. Specification of deadlines and component interaction

5. TECHNIQUES FOR EVALUATION OF
QUALITY ATTRIBUTES

This section summarizes our evaluation of methods for the
assessment of timeliness and memory consumption and interprets
their use for the software architecting.

5.1 Timeliness evaluation

As already mentioned, timeliness is an important quality attribute.
Timeliness can be reasoned about either (analytically) through a
schedulability test, a typical example being Rate Monotonic
Analysis (RMA) (see [17], [16], [11], and [12]), or through the
construction of an explicit schedule (e.g. in [23]).

Both approaches model the scheduling policy adopted for the
system. Depending on whether the priority assignment strategy of
the scheduling policy is fixed or dynamic, different models have
to be used.

For the fixed-priority scheduling policy, RMA is usually applied.
This method is based on the analysis of a so-called critical instant,
when all tasks in the task set are released simultaneously. It is
proven that the worst-case response time appears for each task
during the critical instant. The RMA method calculates response
time for each task (for a given real-time situation describing a set

78

of tasks being analyzed [12]), based on the specified worst-case
execution time and deadline. In addition, if the tasks share some
resources, the blocking time induced by the ones with lower
priority should be given. Finally, the periodicity information (for a
simple case, in a form of task inter-arrival periods) has to be
provided to enable the application of RMA.

However, RMA can only be used with some, rather strict,
assumptions on the tasks of the system. The main restriction is the
assumption that the arrival pattern of a stimulus has some form of
periodicity. Early versions of RMA have dealt only with strictly
periodic events; however, later extensions have incorporated a-
periodic tasks and sporadic servers. Another drawback of RMA is
that it does not allow interaction between the tasks. The only
allowed interaction is mutual access to shared resources.

New schedulability modeling approaches have emerged as a result
of the substantial progress in the development of model checking
techniques both for ordinary and hybrid timed automata. These
approaches partially address the drawbacks of RMA-like
techniques, as they take interaction between the tasks into
account.

The main principle on which these techniques are built is the
replacement of the initial schedulability problem with the
reachability problem for a timed automaton encompassing all
peculiarities of a concrete schedulability policy. The automaton
modeling the scheduler, combined with automata modeling inter-
task communication, is analyzed for reachability of the state
corresponding to a non-schedulable situation [23].

In general, automata-based methods cover a broader scope of
possible scheduling policies, than RMA-like methods do, as they
also take into account task interactions. However, the automata-
based methods have two disadvantages. The first is that these
methods only indicate whether a task set is schedulable or not:
they do not provide the response time of the tasks, which would
be very useful for architects. The second drawback is that these
methods, being based on the construction of an automaton
modeling the scheduler, suffer from the state explosion problem.
Fortunately, during the last three years, a number of successful
accounts about the application of automata-based techniques have
been published [5], [7], and [13]. Because of the flexibility of
these kinds of techniques, their application is feasible at the
architecting level, especially in the cases when standard
techniques like RMA are not applicable.

Both types of techniques require information about the worst-case
execution time of tasks. Unfortunately, most contemporary
methods for the estimation of worst-case execution time cannot be
directly applied to architecting, as they are based on already
existing code. But at the architectural level, some estimations are
often needed before the code is written. Furthermore, there are
two problems with traditional approaches:

e Predictions are over-pessimistic due to excluding effects of
the acceleration facilities of modern CPU’s (pipelines,
branch prediction blocks, caches etc). These effects are
excluded from the analysis because of unpredictable
behavior of the acceleration facilities.

e Variation in behavior due to different input parameters is
difficult to account for. This requires analysis of all possible
paths of control flow, which is not possible for many
situations without providing additional information

Gary T Leavens
78

describing the relation between input data and program
behavior.

It is foreseen that these problems of traditional approaches must
also be solved for performing worst-case execution time
estimation at the architectural level.

5.2 Memory consumption evaluation.

In many cases, analysis of memory consumption is needed to
reason about the feasibility of an embedded system. The
allocation of memory can be dynamic or static. Static memory
allocation is performed at compile- or load-time, while dynamic
memory allocation is performed during run-time. For most real-
time operating systems, the memory layout of an application can
be presented as follows:

1. Statically allocated memory: the image of program code,
static data, stack, and heap

2. Dynamically allocated memory: stacks (for different threads),
data objects allocated in the heap.

Analysis of memory availability for the static allocation
mechanism is trivial in most cases. It is enough just to summate
the sizes of all memory blocks needed for all tasks and compare
the result with the amount of available system memory. However,
this holds only for binary components.

The situation worsens when dealing with the mechanisms for
dynamic memory allocation. In this case, the phenomenon of
fragmentation can be observed. Usually, the fragmentation is
caused by interleaved sequence of memory block allocations and
de-allocations with greatly varying block size. It is rather difficult
to evaluate the impact on memory allocation induced by the
fragmentation. Moreover, having the memory shared between
different tasks results in additional interference that makes the
memory behavior even less predictable.

The most common practice for hard real-time systems is to avoid
the use of dynamic memory management to increase the
predictability and efficiency. Instead, data is allocated statically.
Nevertheless, some research on the evaluation of dynamic
memory allocation has been done, e.g. in [25] by Zorn et al. Their
method employs synthetic allocation traces: the allocation trace of
an actual program is modeled with a stochastic process. This
method is reported to provide results with 80% accuracy. Thus, it
might be applicable for the early analysis of worst-case dynamic
memory consumption, as more precise estimations are not needed
during the architecting phase. Another approach is based on the
abstract interpretation theory; this method automatically
transforms a high-level language program into a function
calculating the worst-case usage of stack and heap space (see
[22]). This approach might also be applicable during the
architecting.

6. CONCLUSION

The foreseen framework for component-based software
architecting is supposed to address the following: (1) reasoning
about composability of behavior, (2) the early assessment of
quality attributes.

For the specification of component behavior, timed automata are
suggested, while the specification of component interaction is
described with Message Sequence Charts (MSC) which allow to
vividly represent timing constraints in the end-to-end manner.

79

For the assessment of timeliness, two alternative classes of
techniques were considered: analytic and constructive techniques.
The applicability of these techniques in the context of component-
based software architecture is being validated with industrial case
studies.

Currently, we are working on the integration of the proposed
architecture description techniques with the evaluation techniques
for the analysis of timeliness and memory consumption. Here,
timed-automata-based techniques are especially promising, as
they have the same formal basis both for the evaluation of quality
attributes and the description of component behavior.

There are a number of challenging topics for further research:

= To find an appropriate level of abstraction for component
behavior description. There should be a balance between the
accuracy of the description (relevant parts of behavior are not
omitted) and the complexity of the evaluation

= To elaborate a method for the specification of resource
consumption. It is important to be able to integrate the
specification of resource consumption in the description of
components to enable the evaluation of quality attributes

= To develop a formal methodology for the evaluation of
worst-case memory consumption.

= To develop a method for relating MSC-based descriptions to
timed-automata-based ones.

7. REFERENCES

[1] G. Abowd, L. Bass, R. Kazman, M. Webb, "SAAM: A
Method for Analyzing the Properties of Software
Architecture," in Proceedings of the 16th International
Conference on Software Engineering, Italy, May 1994

[2] R. Allen and D. Garlan: A Formal Basis for Architectural
Connection, ACM Transactions on Software Engineering
and Methodology, 6(3):213---249, July 1997.

[3] R. Alur, D.L. Dill. A4 Theory of Timed Automata. in:
Theoretical Computer Science Vol. 126, No. 2, April 1994,
pp. 183-236.

[4] M. Barbacci, S. J. Carriere, P. Feiler, R. Kazman, M. Klein,
H. Lipson, T. Longstaff, and C. Weinstock, "Steps in an
Architecture Tradeoff Analysis Method: Quality Attribute
Models and Analysis", Technical Report CMU/SEI-97-TR-
029, 1998

[5S] A. Burns. How to Verify a Safe Real-Time System. The
Application of Model Checking and a Timed Automata to
the Production Cell Case Study. Technical report, Real-Time
System Research Group, Department of Computer Science,
University of York, 1998

[6] A. David, UPPALL 2k: Small
http://www.docs.uu.se/docs/rtmv/uppaal/tutorial.pdf

Tutorial,

[7] A. Fehnker. Scheduling a steel plant with timed automata. In
Proceedings of the 6th International Conference on Real-
Time Computing Systems and Applications (RTCSA99),
pages 280-286. IEEE Computer Society, 1999

[8] D. Giannakopoulou, J. Kramer and S. Cheung, Analysing the
Behaviour of Distributed Systems using Tracta. Journal of
Automated Software Engineering, special issue on

Gary T Leavens
79

Automated Analysis of Software. Vol. 6(1) pp. 7-35.,
January 1999

D. K. Hammer and M.R.V. Chaudron, Component Models
for Resource-Constraint Systems: What are the Needs?, Proc.
6th Int. Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS), Rome, January 2001.

[10] D.K. Hammer, Component-based architecting for distributed
real-time systems: How to achieve composability?, Int.
Symposium on Software Architectures and Component
Technology (SACT), Enschede, Netherlands, January 2000,
to be published by Kluwer.

[11] D. L. Katcher, S. S. Sathaye, J. K. Strosnider. Fixed priority
scheduling with limited priority levels. IEEE Transactions on
Computers, 44(9):1140--1144, 1995

[12] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, H. Gonzalez, 4
Practitioners Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real-Time Systems. Boston,
MA: Kluwer Academic Publishers, 1993

[13] K. J. Kristoffersen, K. G. Larsen, P. Pettersson, and C.
Weise, Experimental Batch Plant - VHS Case Study 1 Using
Timed Automata and UPPAAL, Deliverable of EPRIT-LTR
Project 26270 VHS (Verification of Hybrid Systems), 1999

[14] P.B. Ladkin, S. Leue, Interpreting message flow graphs,
Formal Aspects of Computing, 7(5):473-509, 1995

[15] G.T. Leavens, M. Sitaraman, Foundations of component-
based systems, Cambridge University Press, 2000.

[16] J. Lehoczky, L. Sha, Y. Ding, "The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior," IEEE Real Time Systems symposium, 1989

80

[171 C. Liu, J. Layland, "Scheduling Algorithms for
Multiprogramming in Hard Real Time Environment",
JACM, 1973

[18] J. Magee, N. Dulay, S. Eisenbach, J. Kramer. Specifying
Distributed Software Architectures. In Proceedings of 5th
European Software Engineering Conference, Spain, 1994

[19] R. van Ommering, F. van der Linden and J. Kramer and J.
Magee, The Koala Component Model for Consumer
Electronics Software. Computer 33, 3 (2000), pp 33-85,
2000

[20] M.A. Reniers, Message Sequence Chart, Syntax and
Semantics, Ph.D. thesis, TUE, 1999

[21] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 1998.

[22] L. Unnikrishnan, S. D. Stoller, Y. A. Liu. Automatic
accurate stack space and heap space analysis for high-level
languages. Technical Report TR 538, Computer Science
Department, Indiana University, Feb. 2000

[23] A. Wall, C. Ericsson, and W. Yi. Timed Automata as Task
Models for Event-Driven systems. In Proceedings of RTSCA
99. IEEE Press, 1999.

[24] J. Warner, A. Kleppe, "The Object Constraint Language",
Addison Wesley, 1999.

[25] B. Zorn, D. Grunwald. Evaluating models of memory
allocation. ACM Transactions on Modeling and Computer
Simulation, 1(4):107--131, 1994.

Gary T Leavens
80

Type Handling in a Fully Integrated Programming and
Specification Language

Gregory Kulczycki
Clemson University
Clemson, SC

gregwk@cs.clemson.edu

ABSTRACT

Integrated languages combine formal specification and pro-
gramming features, and make it possible to specify, imple-
ment, and verify programs within the same framework. This
paper examines the consequences of this fundamental inte-
gration on the type system of a software engineering lan-
guage, using RESOLVE as an example. It explains why name
matching for program types coexists naturally with struc-
tural matching for math types. It describes a formulation of
set theory and its relationship to the type system. And it
poses a variety of discussion questions concerning the use of
types and subtypes in the specification portion of the lan-
guage.

Keywords
Type checking, verification, subtypes, set theory, software
engineering

1. INTRODUCTION

Verification of component-based software requires languages
that integrate programming and specification features, and
types are at the heart of this integration. Programming
languages are not suited for specification, and specification
languages are not used for implementation. The elements
of both languages must be integrated to verify that an im-
plementation is correct with respect to a specification. This
requires that programming objects—in particular, types—
be described in mathematical terms. A wealth of papers
have been written about types and type systems, but these
papers invariably focus on types in programming (imple-
mentation) languages or types in specification languages.
The contribution of this paper is its description of a type
system for languages concerned with both implementations
and specifications.

The desire to build predictable, component-based software
has compelled many in the software verification commu-
nity to develop integrated languages—languages that com-

81

bine formal specification with programming. Examples of
such unions include JML, Eiffel, REsoLvE/C4++', Z vari-
ants, and Larch variants [3, 7, 9, 15]. Most of these in-
tegrated languages have resulted from appending a specifi-
cation language onto a preexisting programming language.
In contrast, RESOLVE [12,; 14] has been developed from the
beginning as both a specification and a programming lan-
guage. The language is only one part of the RESOLVE sys-
tem for predictable software development. The system also
includes a framework and discipline for building software
that is—among other things—reusable, verifiable, efficient,
and understandable. The language is intimately tied to the
framework and discipline.

For the past few years the author of this paper has been in-
volved in designing and implementing tools that would bring
RESOLVE into the world of practical programming. The cur-
rent focus of this effort is the development of a RESOLVE
compiler. The project is complex, not only because the com-
piler must deal with a programming and specification lan-
guage combined, but because ongoing research makes the
language a moving target (e.g., performance specification
and verification [13]). During the course of writing the com-
piler we have been forced to refine our ideas about how types
should be handled in both mathematical and programming
contexts.

This paper addresses the following question: What are the
implications for the type system in a language that inte-
grates programming and specification? Using RESOLVE as
an example, we look for answers to this question. Section 2
presents the type model of RESOLVE and demonstrates how
types are treated in programming and mathematical con-
texts. Section 3 summarizes Ogden’s formulation of set the-
ory in RESOLVE [10] and explains how it relates to types.
Finally, section 4 examines a few specific issues involving
math types and subtypes.

2. OVERVIEW OF TYPES

An integrated language is much more complex than either
a programming language or specification language alone, so
simplicity is a primary concern. It is essential to have type
matching rules that are easily understandable. A program-
mer (or compiler) should not have to sift through a myriad
of rules and exceptions simply to evaluate the type of an
expression.

'RESOLVE/C++ uses only the specification portion of the
RESOLVE language

Gary T Leavens
81

Concept Stack_Template(type Entry;
evaluates Max_Depth: Integer);
uses Std_Integer_Fac, String_Theory;
requires Max_Depth > 0;

Type Family Stack is modeled by Str(Entry);
exemplar S;
constraints |S| < Max_Depth;
initialization ensures S = A;

Operation Push(alters E: Entry; updates S: Stack);
requires |S| < Max_Depth;
ensures S = (#E) o #S;

end Stack_Template;

Figure 1: A Concept for Stack

Mathematical and programming elements in the RESOLVE
language are kept as distinct as possible. Thus, assertions in
requires and ensures clauses? of operations are strictly math-
ematical expressions, and conditions in while loops and if
statements are strictly programming expressions. Likewise,
all variables and types found in a mathematical expression
are math variables and math types, and those found in pro-
gramming expressions are program variables and program
types. This means that the same name has a different type
depending on whether it appears in a programming or math-
ematical context. Furthermore, mathematical expressions
and programming expressions are type-checked differently—
in mathematical expressions, types are matched according
to structure, whereas in programming expressions, they are
matched strictly by name.

2.1 Math vs Program Context

Figure 1 shows a RESOLVE specification of a Stack compo-
nent. This simple example turns out to be sufficiently pow-
erful to illustrate the ideas in this paper. The Type Family
declaration introduces the program type Stack and gives its
mathematical model. We use Type Family instead of just
Type because the concept (and therefore the type) is generic
until it is instantiated, so the declaration of Stack here en-
compasses an entire family of types. In the type family
declaration, the left side contains the program type Stack,
and the right side contains the math type Str(Entry). The
fact that mathematical and programming elements come to-
gether in a type declaration underscores the fundamental
role that types play in an integrated language. The exem-
plar introduces a variable of type Stack to describe proper-
ties that hold for any arbitrary variable of type Stack. For
example, the constraints clause indicates that the length
of any Stack must always be less than Max_Depth.

In the specification of Operation Push, parameters E and
S are program variables. When a call is made to this oper-
ation, the compiler checks that the first argument to Push
is of type Entry, and the second argument is of type Stack.
When S appears in the requires clause, however, the com-

2preconditions and postconditions

82

Realization Array_Realiz for Stack_Template;

Type Stack is represented by Record
Contents: Array 1..Max_Depth of Entry;
Top: Integer;
end;
conventions 0 < S.Top < Max_Depth;
correspondence
|S.Top|

H (S.Contents(i)) ;

i=1

Rev

Conc.S =

initialization
S.Top := 0;
end;

Procedure Push(alters E: Entry; updates S: Stack);

end Push;

end Array_Realiz;

Figure 2: A Realization for Stack

piler analyzes it as a math variable. The variable S has been
declared as program type Stack, but since the variable oc-
curs in a mathematical context, the compiler instead uses
the mathematical model of Stack given in the type fam-
ily declaration. So the variable S appearing in the requires
clause has math type Str(Entry). The rest of the concept is
analyzed similarly.

In RESOLVE, like in other model-based languages such as
VDM and Z, a handful of math types are used for modeling
many different program types. This mirrors scientific dis-
ciplines like Physics, where the same mathematical model
is used to capture widely different concepts. Different pro-
gram types such as Stack and Queue may both be modeled
using mathematical strings. This makes it convenient to
write specifications such as the one shown here:

Operation Stk_Q_Transfer(clears S: Stack;
replaces Q: Queue);
ensures Q = #SR°V;

2.2 Structural vs Name Matching

The implementation or realization of Stack_Template in Fig-
ure 2 introduces a Stack type with a specific programming
structure. It indicates how a Stack is represented for this
particular realization. The conventions clause provides the
representation invariant—it indicates which representation
states are permitted. The correspondence clause, or ab-
straction relation, shows how this representation is related to
the mathematical model of Stack given in the concept. No-
tice that the correspondence clause contains two variables,
S and Conc.S, that are not declared directly in this scope.
These variables are derived from the special exemplar vari-
able in the concept’s type declaration. Figure 3 illustrates
what the compiler does when analyzing the declaration of
Stack in a realization. It locates the exemplar from the type

Gary T Leavens
82

Stack Concept Stack Realization

Module Scope Module Scope

Type Scope Type Scope

S: Stack
Conc.S: Str(Entry)

exemplar S =3

Figure 3: Affect of Exemplar on Realization

family declaration in the corresponding concept, and uses
its name to create two variables within the type scope of
the realization. The first variable is named S and has pro-
gram type Stack. The second variable is named Conc.S
(read as “the conceptual value of S”) and has math type
Str(Entry), the mathematical model of Stack. The corre-
spondence clause describes the relationship between these
two variables.

Program type matching in RESOLVE is done strictly by name.
This is reasonable because a primary motivation for intro-
ducing different type names is to keep objects of different
types distinct. Also, in a language that separates inter-
faces (as specifications) from implementations, clients will
not have access to the structural programming representa-
tion of a type, so that structural matching can not be ac-
complished consistently.

Math type matching is done by structure. The structure
consists of math types that can be simple or composite.
If a program type name is encountered in a mathematical
context, the compiler uses its corresponding mathematical
model to convert it to a math type expression. In RESOLVE,
like in Z, built-in composite types include set theory opera-
tors X, —, and P. Composite types are parameterized types
that take other types as arguments. RESOLVE also permits
the use of user-defined composite types. In the type ex-
pression Str(Entry), Str is a user-defined composite type
(defined in the module String_Theory, which is imported
through the uses clause in Figure 1). For a composite math
type to match another by structure, the types of their argu-
ments must also match. For example, Queue x Fahrenheit
matches Stack x Centigrade if and only if the mathematical
models of Queues and Stacks match, and the mathematical
models of Fahrenheit and Centigrade match. Constraints
on mathematical models—given by the constraint clause in
the type family declaration—are ignored by the analyzer;
checking constraints is the responsibility of the verifier.

To illustrate the difference between name matching in the
programming world and structural matching in the math
world, consider the type declaration of Stack in figure 2.
The representation uses both a record and an array, which
are composite program types. In RESOLVE, the type Record
is modeled by a Cartesian product (denoted by the infix
operator x), and the type Array is modeled by a function

83

Table 1: Type Evaluations of Variables

Variable Program Type Math Type

S Stack (Z — Entry) X Z
S.Contents %Array(10,20) Z — Entry
S.Contents(1) Entry Entry

S.Top Integer Z

(denoted by the infix operator —)* [10]. Also, the program
type Integer is modeled by the mathematical integers Z.*
The generic type Entry is treated as a primitive type when
seen from a math context because its math model is not
known before instantiation.

Now consider a variable S of type Stack. Table 1 shows how
a compiler will evaluate the variables in the first column de-
pending on whether they occur in a program or math con-
text. For example, if S.Contents occurs in a requires clause,
it evaluates to the math type Z — Entry. If the variable
S.Top occurs in the condition of a while loop, it evaluates
to the program type Integer. The type %Array(10,20) is a
unique name created by the compiler.

A compiler for RESOLVE must keep track of more type in-
formation than typical compilers. It must have access to
the program name of the type, the program structure of the
type, and the math structure of the type. The program
structure of the type is not needed for matching purposes,
but it is needed to determine whether variables of that type
may use the special syntax of Records or Arrays. For exam-
ple, since the type Stack in the realization above is struc-
turally a record, any variable S of type Stack can use special
syntax to refer its fields—S.Contents and S.Top.

3. SET THEORY

Sets are the fundamental building blocks of the RESOLVE
language. There are several reasons why sets are a natural
choice. First and most importantly, sets are foundational to
Mathematics. All programming objects must have a math-
ematical model, and sets can be used to describe any math-
ematical domain. No matter how complicated a real world
problem is, it can be captured with sets. The same could not
be said if we were to use, say, real numbers, as the building
blocks of the language. Another reason for using sets is that
the basic notions of sets—membership, union, subset, and
so forth—are familiar to most students and programmers.
Finally, sets are flexible enough to describe the language
itself.

3.1 Echelons

The particular flavor of set theory used in RESOLVE has been
developed by Bill Ogden at The Ohio State University [10].
The core of the theory is traditional: It starts with the no-
tion of a universe of all sets (Set) and uses the notion of
membership (€) as a basis for defining all the operators we
expect to see on sets (U, N, C, P, —, etc.). A distinguishing

3Strictly speaking, the RESOLVE type Array is modeled
by a Cartesian product composed of a function and two
integers—one for each bound.
4This model will obviously have constraints, involving min-
imum and maximum values, but recall that constraints are
ignored during type-checking

Gary T Leavens
83

aspect of the theory is the notion of special sets known as
echelons. Echelons are large universes of sets that are closed
under the operations of ordinary set theory, such as unions
and power sets.

The motivation for echelons comes from the need to provide
a collection of sets that is (1) large enough to model ev-
erything one would normally want to model in a computer
program, and (2) small enough that it does not exhaust all
the sets in Set. Henceforth, let the set Set (pronounced “fat
set”) denote the collection which we draw from to model
all program objects in our language. Certainly Set must
have sufficient modeling power for all programming objects.
Using Set as Set, however, would not leave a specifier any
sets to describe the language with. For example, one would
require sets that were larger than Set when writing the spec-
ifications for a RESOLVE compiler that was written in RE-
SOLVE.

To provide sufficient models for programming objects, Set
must be closed under the basic type operations of the lan-
guage. Assume A and B are types that are modeled by
sets in Set. Then any type expression that can be derived
from A and B must also be contained in Set. RESOLVE
currently permits the operators x, —, and P in type ex-
pressions. Therefore, if A and B are elements of Set, A x B,
A — B, and P(A) must also be elements of Set.

Echelons are closed under these basic operations. The prop-
erties of echelons include closure under membership, pairing,
unions and power sets, which means they are also closed
under operators x and —.%> We can define an echelon oper-
ation on A, £(A), to be the smallest echelon that contains
A. If we take Eg = ¢, then E1 = E(Eo) contains the sets
@, P(6), P(P(d)), ..., which are traditionally used to model
the natural numbers. It can be shown that E; is only count-
ably infinite, so it will not be large enough for real world
models. E; = E(E;), however, does provide sufficient sets.
It contains models for N,R, P(R),R x R,R — R, etc.

If Set is at least Eo we know it has sufficient modeling power
for all ordinary programs. In RESOLVE, Set is generally as-
sumed to be E2, but whether it is Ez, or Es, or Ejgo, the
important fact is that a specifier still has access to &(Set) to
describe the language itself. A rigorous treatment of eche-
lons can be found in [10]. The objective of this summary is
only to present enough information to give an idea of their
significance for program specification.

3.2 Primitive Types

If sets are the building blocks of the RESOLVE language,
then primitive types are the cornerstones on which the other
blocks rest. Declarations of primitive types take the form:

To: Set

T1: Set — Set

T2 : Set x Set — Set

T3 : Set x Set x Set — Set

5 Assuming appropriate definitions of x and —, we can show
that A x B C P(P(U{A,B})), and A — B C P(A x B).

84

Most often only the first two will be seen. The first type, To,
is a simple type, while the remaining types are composite.
Like all composite types, primitive composite types cannot
be used in isolation—they must have parameters. For ex-
ample, if Str: Set — Set, then one cannot declare x: Str,
but one can declare an x: Str(Gamma), where Gamma: Set.

A primitive type, like every other object in RESOLVE, is a
set. Abstractly, a type is distinguished from other sets of
the same cardinality by its properties. For example, it can
be shown that the sets N and Z have the same cardinality,
but the set N is not closed under subtraction, while the set
Z is. Primitive types in RESOLVE are introduced via two
constructs. First, a definition spells out the properties of
the type:

Def Is_Natural_ Number_Like(N: Set, 0: N,
suc: N - N): B =
(*P1*) Vn : N, suc(n) # 0 and
(*P2*) Is_Injective(suc) and
(*P3*) VS : P(N),
if0e€S AVn:N,n€S=suc(n) €S
then S = N;

Then an assumption introduces a set that satisfies that def-
inition:

Assumption Is_Natural Number_Like(N, 0, suc);

The properties in the definition (P1-P3) mirror the axioms
one would normally see in an axiomatic description of the
natural numbers. The approach of using definitions to de-
scribe the properties of a type simplifies the semantics of the
language—we do not have to concern ourselves with special
syntax and semantics for signatures and axioms. In RE-
SOLVE, definitions are used to introduce all mathematical
objects, whether they are constants, variables, functions, or
types. The above assumption indicates that the set N (to-
gether with sets 0 and suc) is any arbitrary model of the
natural numbers. This enforces abstractness because the
natural numbers are not identified with one particular rep-
resentation.

3.3 Objects as Sets

Every programming object in the RESOLVE language can
be modeled by a set contained in Set. That is, any variable,
function, or type that occurs in a programming context must
lie within Set. Though math objects are exempt from this
restriction, most math objects seen in programs will also
be in Set because they are typically used to describe pro-
gram objects. When we want to describe complex software
like compilers and verifiers, our specifications will draw on
objects that lie outside of Set.

Simple primitive types are directly contained in Set, and
composite primitive types always take parameters, which
also puts them in Set. The set operators that we are per-
mitted to use in math type expressions (x, —, and P) are
all closed under echelons. Since all math types that are used
to model program types are constructed by applying com-
posite types and set operators to other math types, all such
math types are in Set.

Gary T Leavens
84

All program types have a mathematical model, which is a
math type expression. The declaration:

Type Family Stack is modeled by Str(Entry);
is the text equivalent to:
Type Family Stack C Str(Entry);

The subset operator is used instead of the equal operator
because of constraints on the model. For an example, see
Figure 1.

All programming objects in RESOLVE belong to some type,
as indicated by the type membership operator (:). Since
all types are modeled by sets in Set, the type membership
operator can be replaced with set membership (€) to de-
scribe the mathematical relationship between an object and
its type. Finally, since Set is closed under membership, all
programming objects must be in Set.

4. DISCUSSION TOPICS

During type-checking, a compiler needs to be concerned with
a number of questions, such as how to treat subtypes, when
to require casts, when to report errors, and when to give
warnings. Although these questions must be answered for
both program and math types, we focus on how they ap-
ply to math types, mainly because of the rich diversity of
views on how types should be handled in specification lan-
guages, ranging from traditionalists [2, 3, 15] to those whose
type systems incorporate theorem provers [11] to those who
question the necessity of type systems altogether [6]. Issues
involving program subtypes will largely depend on how the
language in question handles polymorphism, a topic that
merits a separate paper.

The distinction between types and other objects (variables
and functions) is quite clear in the programming world: pro-
gram types are introduced by the keyword Type. How-
ever, in the math world all objects—variables, functions,
and types—are introduced by the keyword Definition or
through quantifiers in expressions. This uniformity is inten-
tional, since all objects are sets, but it forces specifiers and
compilers to rely on other cues to tell them which mathe-
matical objects can be used as types. Examples based on
subtypes are discussed in this section.

If an object T is declared to be of type P(A) where A is a
type, then T is also a type, and we say that T is a subtype
of A. Permitting such declarations requires the language to
have reasonable semantics for handling the relationship be-
tween the type T being declared and the type A being used
in the declaration. Consider the definition:

Definition Even : P(N) = {n: N | n mod 2 = 0};

It is reasonable to want to declare objects of type Even and
add them together using the + operator defined in Natu-
ral_ Number_Theory (the theory introducing N). The type
of the result would be N, so a specifier could write:

Vel,e2: Even,dn: N 52 .-n =el 4 e2;

85

To analyze this expression, a compiler needs to know that
Even is a subtype of N, and it must have an algorithm that
determines which + operator to use if there is more than
one choice. This can become non-trivial, and as a rule, if
something is complex for the compiler, it is also conceptually
complex for the programmer or specifier. One way to sim-
plify things is to require explicit type casting, so the above
expression would produce an error if there were no + oper-
ator defined that took two objects of type Even. To use the
+ from natural number theory, a specifier might be forced
to write:

Vel,e2 : Even,3n: N 52-n = (N)el + (N)e2;

This makes the expression harder to write since the spec-
ifier must do the work that the compiler would have done
to decide which + should be be used. In RESOLVE, where
emphasis is on qualities such as reuse and understandabil-
ity, readability usually takes precedence over writability. In
this example, there is an argument for both sides in terms
of readability. If the + operator is overloaded in an un-
conventional way, explicit casting may clarify things; if the
+ operator is not overloaded at all, explicit casting simply
adds unnecessary clutter to the expression.

In some programming languages, casting to a parent type
is implicit, but casting to a subtype must be explicit. An
analogous example in the math world might define:

Definition Vertex : P(Z) = {z: Z | 1 < z < Max_Vert};
Definition Cost(G : Graph; vl,v2 : Vertex) : R®
If casting to a subtype is required, one must write

VG : Graph,Vzl,z2 : Z,
Cost(G, (Vertex)z1, (Vertex)z2) < 4.7, (1)

instead of

VG : Graph, Vzl,z2 : Z, Cost(G, z1,2z2) < 4.7; (2)
This may seem quite reasonable for a programmer, but some
specifiers may consider the following expression perfectly
reasonable:

VG : Graph, Vzl,22 : Z, if z1,2z2 € Vertex

then Cost(G, z1,22) < 4.7; (3)
There is nothing wrong with expression (3) as a mathemat-
ical formula, and it is obvious that the Cost function is de-
fined for all z1,22 € Vertex. But if we insist that the com-
piler must report a type error for expression (2), then we
must insist that it does the same for expression (3). There
may be merit in exploring ways that allow the specifier more
flexibility in writing expressions while still insisting that he
provide sufficient clues to the compiler of his intentions. For
example, we might allow:

VG : Graph,Vzl,22 : Z, if z1,2z2 : Vertex

then Cost(G, z1,22) < 4.7; 4)

5We can imagine that the Cost function indicates the ex-
pense of traveling from v1 to v2 in graph G.

Gary T Leavens
85

Expression (4) replaces the set membership operator (€) of
expression (3) with a type membership operator (:). This
could indicate to the compiler that z1 and z2 are to be
treated as belonging to type Vertex for the remainder of
the expression scope. Unfortunately, we would have to de-
velop another mechanisms for the case where the if part of
expression (4) were in a precondition and the then part of
the expression were in a postcondition. If we introduce too
many distinct mechanisms for handling a conceptually sim-
ilar situation we run the risk of significantly complicating
the language.

All of the questions that arise with subtypes due to the
power set operator may occur with primitive types as well.
It is reasonable to think of N, Z, and R as distinct types—
after all, their algebraic structures are different. It is also
reasonable to want to treat N as a subset of Z and Z as a
subset of R. If these relationships between primitive types
are desired, a mechanism different from the one for subtypes
must be provided that allows the compiler to treat them as
such.

5. RELATED WORK

Many examples of integrated languages exist, though the
degree of integration varies widely. Eiffel [9] is essentially
a programming language with a few specification features
built in. Like RESOLVE, it was created independently of
any preexisting programming language; unlike RESOLVE, its
specification features are limited—it does not include a com-
plete formal specification language (see p. 400 of [9]). JML
(Java Modeling Language) [7] is a behavioral specification
language that was created for Java. Used together, JML
and Java form an integrated language. Unlike Eiffel, JML
provides models for its programming objects. Mathemati-
cal expressions in both Eiffel and JML are designed to look
similar to programming expressions. Accordingly, they will
also type-check similarly. Recall that RESOLVE type-checks
mathematical expressions by structure and programming
expressions by name. RESOLVE/C++ [5] applies the RE-
SOLVE framework and discipline to the C++ programming
language. It uses the specification portion of the RESOLVE
language for reasoning. Integrated languages formed by
combining a preexisting specification language with a preex-
isting programming language will type-check mathematical
expressions in accordance with the rules of the specification
language and will type-check programming expressions in
accordance with the rules of the programming language.

Most practical specification languages allow some form of
subtyping [2, 7, 15]. The PVS verification system [11] per-
mits downcasting to predicate subtypes by generating a proof
obligation when a type is detected in a place where its sub-
type is expected. Problems similar to those presented in
section 4 cause Lamport to question whether specification
languages should be typed at all [6]. Topics relating to pro-
gram subtypes include behavioral subtypes [8] and match-

ing [1].

6. CONCLUSION

Integrated languages must have an effective method for han-
dling program and math types. Integration requires that
a mechanism exist for relating programming and mathe-
matical elements. Type declarations are a natural place

86

to describe this relationship. Practical concerns compel us
to treat programming and mathematical objects differently.
Program types should match according to their names, and
math types should match according to their structure.

The theoretical basis of the specification language will affect
which objects can be used as types, and will determine the
kinds of models that can be constructed for program objects.
We need to distinguish sets that model real world objects
in a language from larger sets that are needed to describe
compilers and verifiers for that language.

The handling of subtypes in the specification portion of an
integrated language offers a series of trade-offs. Systems that
allow a specifier greater flexibility in writing expressions run
the risk of permitting poor expressions that could be caught
quickly with a less tolerant type system.

7. ACKNOWLEDGMENTS

Several people contributed important ideas to this work and
made helpful comments about drafts of this article. I would
especially like to thank Murali Sitaraman, Bill Ogden and
Steven Atkinson.

We also gratefully acknowledge financial support from our
own institutions, from the National Science Foundation un-
der grants CCR-0113181, DUE-9555062, and CDA-9634425,
from the Fund for the Improvement of Post-Secondary Ed-
ucation under project number P116B60717, and from the
Defense Advanced Research Projects Agency under project
number DAAH04-96-1-0419 monitored by the U.S. Army
Research Office. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the au-
thors and do not necessarily reflect the views of the National
Science Foundation, the U.S. Department of Education, or
the U.S. Department of Defense.

8. REFERENCES
[1] M. Abadi and L. Cardelli. On subtyping and
matching. ACM Transactions on Programming
Languages and Systems, 18(4):401-423, July 1996.

[2] D. Gries and F. B. Schneider. A Logical Approach to

Discrete Math. Springer-Verlag, New York, 1993.

J. V. Guttag and J. J. Horning. Larch: Languages and
Tools for Formal Specification. Springer-Verlag, New
York, 1993.

D. E. Harms and B. W. Weide. Copying and
swapping: Influences on the design of reusable
software components. IEEE Transactions on Software
Engineering, 17(5):424-435, May 1991.

J. Hollingsworth, L. Blankenship, and B. W. Weide.
Experience report: Using RESOLVE/C++ for
commercial software. In Proceedings SIGSOFT FSE.
ACM, November 2000.

L. Lamport and L. C. Paulson. Should your
specification language be typed? ACM Trans.
Program. Lang. Syst., 21(3):502-526, May 1999.

G. T. Leavens, A. A. Baker, and C. Ruby. JML: A
notation for detailed design. In H. Kilov, B. Rumpe,

Gary T Leavens
86

8]

[9]

(10]

(14]

(15]

and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, chapter 12. Kluwer, 1999.

G. T. Leavens and K. K. Dhara. Concepts of
behavioral subtyping and a sketch of their extension
to component-based systems. In G. T. Leavens and
M. Sitaraman, editors, Foundations of
Component-Based Systems. Cambridge University
Press, Cambridge, United Kingdom, 2000.

B. Meyer. Object-Oriented Software Construction.
Prentice Hall PTR, Upper Saddle River, New Jersy,
2nd edition, 1997.

W. F. Ogden. The Proper Conceptualization of Data
Structures. The Ohio State University, Columbus, OH,
2000.

J. Rushby. Subtypes for specifications. In Software
Engineering - ESEC/FSE ’97, pages 4-19. ACM
SIGSOFT, September 1997.

M. Sitaraman, S. Atkinson, G. Kulczycki, B. W.
Weide, T. J. Long, P. Bucci, W. Heym, S. Pike, and
J. E. Hollingsworth. Reasoning about
software-component behavior. In Procs. Sixzth Int.
Conf. on Software Reuse, pages 266—283.
Springer-Verlag, 2000.

M. Sitaraman, W. F. Ogden, G. Kulczycki, J. Krone,
and A. Reddy. Performance specification of software

components. In Proceedings of SSR ’01, pages 3—10.
ACM/SIGSOFT, May 2001.

M. Sitaraman and B. W. Weide. Component-based
software using RESOLVE. ACM Software Engineering
Notes, 19(4):21-67, 1994.

J. Spivey. The Z Notation. Prentice Hall, New York,
1989.

87

Gary T Leavens
87

A Formal Approachto Software ComponentSpecification

Kung-Kiu Lau
Departmenbf ComputerScience
Universityof Manchester
ManchesteM13 9PL
UnitedKingdom

kung-kiu@cs.man.ac.uk

Abstract

There is a geneml consensushat the paradigmshift to
component-basesoftwae developmenshouldbe accom-
paniedby a correspondingparadigmshiftin theunderlying
appmoad to specificationand reasoning Work in modu-
lar specificationand verification has shownthe way, and
following its lead, in this position paper we outline our
appmoad to specifyingand reasoningabout components,
which usesa novel notionof correctness.

1 What is this paper about?

As thetitle suggeststhis paperis aboutan approacho
formal specificationof softwarecomponentsThe purpose
of suchanapproachs to allow formalreasoningboutcom-
ponents.The ultimate goal of Component-base8oftware
Development(CBD) is third-party assembly To achieve
this, it is necessaryo beableto specifycomponentén such
away thatwe canreasormabouttheir constructiorandcom-
position, and correctnesshereof,a priori. Work in mod-
ular specificationand verification, e.g. [9, 14] hasshawn
the way, andour approachfollows its lead. However, our
approachis novel andhencedifferentin the way we define
correctness.In this paper we will discusshow we spec-
ify componentsandin particularhow we defineandreason
aboutcorrectnessandwhy thisis usefulfor CBD.

2 SpecifyingComponents

Ideally componentshouldbe black boxes in orderthat
userscan(re)usethemwithout knowing the detailsof their
innards.In otherwords,theinterfaceof acomponenshould
provide all the informationthatusersneed. Moreover, this
informationshouldbe the only informationthatthey need.
Consequentlythe interface of a componentshouldbe the

88

Mario Ornaghi
Dip. di Scienzedell'Informazione
Universita’degli studidi Milano
Via Comelico39/41,20135Milano
Italy
ornaghi@dsi.unimi.it

only point of accesgo the component.lt shouldtherefore
containall the information that usersneedto know about
thecomponens opefations i.e. whatits codedoes,andits
contet dependencied.e. how andwherethe component
canbe deployed. The code,on the otherhand, shouldbe
completelyinaccessiblgandinvisible), if a components
to beusedasablackbox.

The specificationof a componenis thereforethe spec-
ification of its interface which must consistof a precise
definitionof thecomponensoperationsandcontect depen-
denciesandnothingelse.

3 Reasoningabout Components

To reasormaboutcomponent@&ndtheir constructionand
compositionwewill coinaphrasea priori reasoningwhich
is essentiafor CBD to achieseits goalof third-partyassem-
bly. Asits namesuggesta priori reasoningakesplacesbe-
fore the constructiortakesplace,andshouldthereforepro-
vide anassembhguidefor componentomposition.

For CBD, a priori reasoningvould work asfollows:

e it requiresthatit is possibleto shawv a priori thatthe
individual componentsn questionare correct (wrt
their own specifications);

(This enablesus to do componentertification see
below.)

o it thenoffershelpwith reasoningaboutthe composi-
tion of thesecomponents:

— to guidetheir compositionin orderto meetthe
specificatiorof alargersystem;

— to predictthe precisenatureof arny composite,
so that the compositecanin turn be usedasa
unit for furthercomposition.

(Thisenablesusto do systenprediction seebelow.)

Gary T Leavens
88

4 Predictable Component Assembly 4.2 System Prediction

A priori reasoningaddresses an open problem in CBD, For system prediction, obviously we nealticonstituent
viz. predictable component assembliydoes so because it components to be certified priori correct). Moreover, for
enables component certification and system prediction. any pair of certified componens#s andB whose composi-

Consider Figure 1. Two componeisandB each have tion yieldsC:

their own interface and code. If the compositionfofind ,
e beforeputting A and B together, we need to know

whatC will be;

Al 8] c|
Interface 4 | Interface ? e and furthermore, we need to be able to cer@fy
Code Code ? L . .
Component A Component B Component C This is illustrated by Figure 3. The specification@imust
Figure 1. Predicting component assembly. T‘ ?‘ a
. . . Interface/Spec Interface/Spec Interface/Spec
B is C, can we determine or deduce the interface and code Code P + Code P — Code P
of C from those ofA andB? The answer lies in component Certified Certified Certified
certification. component A component B component C

ip . Figure 3. System prediction.
4.1 Component Certification 9 ysiemp

Certificati hould hat td int be predictable prior to composition. Moreover, we need to
ertification should say what a component does (in €ISy now how to certifyC properly, and thus how to uge in

ofits co_ntext d(_apendencﬁasnd should gu_arantee that 't_W'" subsequent compositiorA priori correctnesss just what
do precisely this (for all contexts where its dependencies are

satisfied). A certified component, i.e. its interface, should we need in order to do system prediction.

therefore be specified properly, and its code should be ver- o .

ified against its specification. Therefore, when using a cer-2 Modular Specification and Verification

tified component, we need only follow its interface. In con-

trast, we cannot trust the interface of an uncertified compo- Current approaches to modular (formal) specification and
nent, since it may not be specified properly and in any caseverification, e.g. [9, 14], usenodular reasoning This is

we should not place any confidence in its code. specification-based reasoning that tries to say before run-
In the context ofa priori reasoning a certified compo- ning the software whether it will behave as specified or not
nentA is a priori correct This means that: (subject to relevant assumptions). This is illustrated in Fig-

ure 4. Before a composite moduleis deployed, we can

e A is guaranteed to be correct, i.e. to meet its own
Soecorc] = '

specification;

o A will always remain correct even if and when it be-

comes part of a composite. c] Al B
L . Interface — Interface + Interface
This is illustrated by Figure 2, where componérttas been Code = Code Code
Verified module C Verified module A Verified Module B
T‘ ?‘ a Figure 4. Module composition.
Interface/Spec Interface Interface? %
+ —
Code Code Code?

- predict whether it will work according to its specification.

Certified Component B Component C .
component A For example, if component modules, sagndB, are to be
used inC, the correctness o is established based on the
specifications oA andB (even beforeA andB have been
implemented). The componemsandB are then verified
independently. The contexts AfandB are taken in account
when using and verifyind. andB.

Thus modular reasoning &priori in nature. It predicts
correctness, based on specification. This kind of prediction
is we believe subtly different from the prediction that we

Figure 2. Component certification.

certified, so we know how it will behave in the composite
C.

However, we do not know hoB will behave inC, since
it is not certified. Consequently, we cannot expect to know
C'sinterface and code from thoseAfandB, i.e. we cannot
predict the result of the assembly AfandB.

89

Gary T Leavens
89

intend to convey in Figure 3, which predicts specification, is openif its signatureX contains parameters. In this case,
based on (certified) correctness (we will discuss this in Sec-C’s axioms X have many potential models, depending on
tion 11). the parameters in the signatize

e Example 7.1 A simple example of a closed context is first-
6 Our Approach to Specifying Components order arithmeticVAT = (Xpa, PA). Xp4 contains the

unary functions (successor) and the binary functions
In the rest of this paper, we outline our approach to spec-(sum) and« (product). PA contains the usual Peano’s ax-
ifying components, so that we can carry out a priori reason-ioms for s, +, « (and all the instances of the first-order in-
ing about their construction and composition. Our approach duction schema).
differs from current work in modular specification and ver-
ification, however, in that we use a novel notion of a priori cONTEXT MAT:

correctness. SIGNATURE:
Diagrammatically, our component looks like Figure 5, Sorts: N
and in the subsequent sections, we will explain the key in- Functions: 0 : []— N
s : [N]—=N;
Name +,%* : [N,N]—= N;
CONTEXT(IL, Iy, . ..) AXIOMS: {s} : Vo:N.-s(z)=0;
il)ggre:]tl;re. Vz,y: N.s(z)=s(y) >z =1y;
Constraints: .. ; {+} : Vz:N.z+0=uz;
INTERFACE Vo,y: N.z+s(y) = s(z+y);
Operations: specifications; {x} : Vz:N.zx0=0;
~opl(m), op2(my), .. .; Vo,y: N.x*s(y)=(zxy) + .
Dependencies: 11y, Iy, . .., w1, 7, .. .;
constraints; The standard structure of natural numbers is the intended
CODE model of VAT .
Code for op1, op2, ...

Figure 5. Ingredients of a component.))
Example 7.2 A simple example of an open context is the

gredients, viz. theontextand theinterface and their spec- ~ following, which axiomatises lists with generic elemeits

ifications. and a generic total ordering on X.
. Wetsh(t)lrJ]Id poi“tﬂ?ut that this is V\tlork in pl)(rogress, so we CONTEXT £LIST(X, < : [X, X));
o not yet have all the answers, so to speak. IMPORT AT
SIGNATURE:
7 Context Sorts: X, L;
. . . . Functions: mnil : []— L;

A component is defined in problem domainor acon- | : [X,L] = L;
text We will represent a context as a full first-order logical noce [X,L] - N;
theory with an intended (mathematical) model. Relations: pos : [X,N,L];
7.1 Signature and Axioms AXIOMS:

] . {nil,|} : Vo,y,2: X, Vj,k,[: L.

A contextC = (X, X) is composed of aignatureX (~nil =z|jA(ylk =2l 2 y=2Ak=1));
(containingsort symbols functiondeclarations ancelation {nocc} : Vz : X . nocc(zx,nil) = 0;
declarations) and a finite or recursive sétof ¥-axioms. Ve,y: X, VI: L.

A context axiomatises a problem domain and thus enables x =y — nocc(x, y.l) = nocc(z,l) + 1;
us to reason about it. More specifically, a context contains Va,y: X, Vi: L.
theabstract data typeADTs) and all the concepts that are ~@ =y — noce(z, y.l) = noce(, 1);

needed to build a model of the application at hand. A con- Pos} :Ve: X, Vi:L.
Pb (pos(z,0,1) > Jy: X, j: L. l=y|lj Az =1y);

text is thus a (first-order) theory with an intended model.
e) Vz: X, Vi:L.

We distinguish betweeclosedandopen(or parametrig (pos(z, s(i),1) <>y : X, j: L.
contexts. A context = (¥, X) is closedif its signatureX: o ’
does not contain any parameters. In this c8seaxiomsX
have one fixed model. By contrast, a contéxt (X, X)

I =yl Apos(x,i,j)).

90

Gary T Leavens
90

The context (ADTWAT is imported, together with its
signatureX p 4 and axiomsP A.

nil and| are theconstructorsfor the sortL of lists of
elements of sorfX. (For an element and a listy, z|y
stands for the list with heagl and taily.) Their axioms are
the listconstructor axiomgplus structural induction).

pos(x,i,l) means that the elementoccurs at position
in the list/, where positions start froifu

nocc(z, 1) is the number of occurrences of the element
in the listl.

7.2 Constraints

In an open context, some of the parameters in the sig-
nature may not be instantiated just anyhow. In fact their
instantiation must be subject to strictly defined constraints.

Example 7.3 In the contextCZST (X, < : [X, X]), in or-
der to ensure that is a total ordering, we have to add the
following constraints

CONTEXT LIST(X, < : [X, X]);
IMPORT: NAT;

SIGNATURE:

Sorts : X, L;

)
Functions:
Relations:
AXIOMS:
CONSTRAINTS Vz,y,z: X . (z<yAy<z) <>z =1y;
Ve,y,z: X. (e<yAy<z) =z <z
Ve,y,z: X. e <dyVy<uz.

The purpose of constraints is to filter out illegal param-
eters of the context: only parameters that satisfy the con-
straints are allowed. For example, if in the conté&ST (

X, < : [X,X]), we want to substituté by the sortV of
natural numbers, and the orderirgby < on N, then we
can express this ascdosure(or instance:

CLOSURE NATLIST oF LIST(X,< : [X, X]);

CLose X BY N,
< BY Vr,y:N.(z<y<+z<y).

This closure of the conteZST (X, < : [X, X]) sat-
isfy the constraints of the context singés a total ordering
onN.

In this example, we have closéd and < within LZST
itself, for simplicity. In general, of course, they could also
be closed within another conte&t after importingCZST
intoC.

Obviously constraints define context dependencies.

91

8 Interface

The interface of a component is defined in the context of
the component. The interface is the only part of the com-
ponent that is visible to the users, and it should provide all
the information that the users need in order to deploy the
component. Since the interface is defined within the con-
text, the latter should be regarded as part of the former. As
we already made clear, the interface should contain specifi-
cations for the operations, and the context dependencies, of
the component.

8.1 Operations

In the interface, operations are represented by their spec-
ifications. In a context®, X), a specification of a new (re-
lation) symbolr is a set of axioms that definein terms
of the symbols of the signatube. For example, suppose in
LIST we have operations for sorting, suchmsertion sort
andbubble sort The specification for these two operations
are as follows:

Vi:L.ord(l) <

Vi: N, Vz,y: X . ((pos(z,i,l) Apos(y,s(i),l)) = x<y)
Vi, k: L. perm(j,k) <> Vz : X . noce(zx, j) = noce(x, k)
Vi, k : L. sort(j, k) <> perm(j, k) A ord(k)

V4, k,l: L.ord(j) Aord(k) —

(merge(j, k,1) <> ord(l) A perm(j||k,1)).

We represent operations as logic programs. For example,
the operationfsertion sortandbubble sortare represented
by the following logic programs:

Operation: insertionSortmerge)
sort([],[]) «
sort(xz.j,l) <«

sort(j, k), merge([z], k, 1)

Operation: bubbleSort<)
sort([],[]) «
sort(z.j,y.l) <« part(z.j,[y], k), sort(k,1)
part([], [, []) <«
part([z],[z],[]) <«
part(z.j,[z],y.l) <« =z <y,part(j[y],])
part(z.j,[y],z.l) <« y<z,part(4[y],1)

The operation insertionSort computes the relationt
(as specified by the specification given above) in terms of
the relationmerge (also as specified above). It therefore
needs a program fanerge in order to complete the sorting
operation. As a result insertionSort hagrge as a param-
eter, hence we write insertionSaftérge). In any context
thatis a closure (instance) 65T, insertionSort will need
a program fomerge.

LFor listsj andk, j||k stands for their concatenation.

Gary T Leavens
91

Thus parameters to operations also define context depen- Iterate

dencies. _ CONTEXT ZTER(D, o, ¢)
By contrast, the operation bubbleSort has only the pa-
rameter<, which is the parameter of the context. So bub- INTERFACE

Operations: Siteratca Sunit: Sup;
iteratg unit, op);
Dependencies: D, o, e, unit, op;

bleSort will work for any context in whickq is instantiated
(closed) by any total ordering.

CODE

8.2 Context Dependencies .
Code for iterate

These consist of the (global) parameters in the signature Figure 6. The Iterate component.
of the component, the (local) parameters of the operations,
together with the constraints in the context. CONTEXT ZTER(D, o,e);

So now we can define the context dependencies com- mMpoRT: NAT;
pletely in a component. SIGNATURE:

Sorts: D;
9 Code Functions: e : []— D;
o : [D,D]— D;

The code should be inaccessible (invisible) to the user. x + [D,N] = D;
It is usually binary. However, if we allow parameters in the ~ AXIOMS: Vz:D. x(z,0) =g
operations, then the code has to be source code, which has Ve :D, Vn: N. x (z,5(n)) = x(z,n) o .

to be instantiated before execution.

If the source code is available, then the user or the de-
veloper can also verify its correctness with respect to the
specifications in the context.

whereN AT is the closed context for first-order Peano arith-
metic defined in Example 7.1.
In the open conteXt TER(D, o, e):

(i) D is a (generic) domain, with a binary operation
10 A New Notion of A Priori Correctness and a distinguished elementsee the first axiom);
) . . (ii) the usual structure of natural numbers is imported,;
In our work the basis for a priori reasoning is a new no-
tion of a priori correctness. So having laid out the speci- (iii) the function symbolx represents the iteration opera-

fication of a component, we now turn to our definition of tion x(a,n) =eoa o---0 a
a priori correctness of a component. Specifically, we con- (n times)
sider a notion of a priori correctness of the operations in a (see the second axiom).

component, that we casteadfastness))
We can use théierate component to iterate times the

10.1 Steadfastness binary operatiorn on some (generic) domaib.
Suppose iriterate, or more precisely its conteXt7TER,

A steadfasiboperation (programpp is one that is cor- we specify theiterate operation by the following relation:

rect (wrt to its specification) in each intended model of the
contextC of the component. Since the (reducts of the) in-
tended models of its specialisations and instances are inThe predicateiterate(z,n, z) means that is the result
tended models of, a steadfast progra@p is correct, and of applying the iteration operatior to (a,m), ie. z =
hence correctly reusable, in all specialisations and instances, (4 n) = eoa o---o a.

of C. (n times)

Aformalisation of steadfastness is givenin [8], withboth s specification ofterate can be implemented by the
a model-theoretic, henaeclarative characterisation and a gperation iterate(nit, op) defined by the following logic

proof-theoretic treatment of steadfastness. Here we give grogram:
simple example (based on an example in [8]) to illustrate

Siterate : iterate(a,n,z) < z = x(a,n) (1)

the intuition behind steadfastness. Operation: iteratg unit, op)
iterate(a,0,v) <« unit(v)

Example 10.1 Consider the following component: iterate(a,s(n),v) <« iterate(a,n, w), op(w,a,v)

where the open conte#®ER (D, o,e) is defined as fol-

wheres is the successor function for natural numbers, and

lows:
the relationsunit and op are specified IrZ7ER by the

92

Gary T Leavens
92

specifications:

Sunit
Sop

unit(u)
op(z,y, 2)

< u=e
< z=xoy (2)
The predicateinit(u) meansy is the distinguished element
e, andop(z,y, z) means that is the result of applying the
operationo just once tar andy. Therefore in the program
for iterate, ifunit(v), i.e. v is juste, theniterate(a, 0, v)
computesx(a,0) = v = e. Otherwise, ifiterate(a, n,w),
i.e. w = x(a,n), andop(w,a,v), i.e. v = w o a, then
iterate(a, s(n),v) computesx(a,s(n)) = v = woa =
x(a,n)oa=eoa o---0 a.
~——

(n+1 times)

The operation iteratefuit, op) is defined in terms of the
parameteranit andop. If we can assume that operations
for unit andop are a priori correct, i.e. they are correct wrt
their specifications (2) ianyinterpretation ofZER , then
we can prove that the operation iterate{t, op) is stead-
fast i.e. it is always correct wrt (1) (and (2)).

For example, suppose we have a compoh&itrals as
shown in Figure 7, in which the context4 , and the

CONTEXT NAT
INTERFACE
Operations: Synit; Sop;
unit, op
CODE
Code for unit, op

Figure 7. The Naturals component.

operations unit and op are specified as follows:

Sunit
Sop

< u=0
o z=z4y

unit(u)

op(z,y, 2) ®)

(i.e. unit(u) meanss is0, andop(z,y, z) means =g)
and defined as follows:

Operation:- unit
unit(0).

Operation:- op
op(x,y,2) + z=z+y

Then inNaturals, unit and op are (trivially) a priori cor-

(i) D is the set of natural numbers;

(i) ois+;

(i) eisO;

(iv) x(a,n) B +a =na
Consequently, the specificati®f.,.4. (1) specialises to

iterate(z,n,z) > z =na
and similarlyS,.;: (in (2)) specialises to
unit(u) < u =0

(in (3)), andS,, (in (2)) to

op(z,y,z) dyz ==

(in (3)). Since, the operations unit and op are correct with
respect to their (specialised) specifications (3), the operation
(iterate@nit, dp) unitU op) will computena, and is cor-
rect wrt its (specialised) specificationlierate+Naturals.

To illustrate the correct reusability of the iterate opera-
tion in Iterate, suppose now we have a componiegers

CONTEXT INT
INTERFACE
Operations: Sunit, Sop;
unit, og
CODE
Code for unit, op

Figure 8. The Integers component.

as shown in Figure 8, where the operations unit and op are
specified by:

Sunit unit(u) < u=0 (@)
Sop op(:c, yaz) & z2=9
and defined by:
Operation:- unit
unit(0).
Operation:- op
op(z,y,2) « z=x—y

rect wrt to their specifications (3), and if we compose the Obviously the operations unit and op integers are a

componentdterate and Naturals, the operation iterate in
the compositdterate+Naturals will be fully instantiated

priori correct wrt their specifications (4). We can com-
poselterate andIntegers by a closure operation ofter-

(and therefore executable), and more importantly it will be ate, and get a correct iterate operation in the compdsite

correct wrt its specification (1) (and (2)).

The composition here is of course just the simple closure

operation oriterate, but it is sufficient to illustrate the idea
of steadfastness. In this closureltrate:

93

erate+Integers.
In Iterate+Integers:

(i) D is the set of integers;

Gary T Leavens
93

(i) ois—;
(iii) eisO;
(iv) x(a,n)=0

and the specificatiof.r4 ((1) in Iterate) specialises to

a—— a=na
iterate(z,n, z)rer 2z =
Sunit (in (2)) specialises to
unit(u) < u =0
(in (4)), andS,, (in (2)) to
op(z,y,2) > z=12 y

(in (4)). Since unit and op are correct wrt their specifica-
tions (4), the operation (iterdtensit, dp) unitUop) com-
putes—na for an integemn, and is correct wrt its (specialised)
specification iflterate+Integers.

The iterate operation is thus a priori correctliarate
and we say it isteadfastIt can be correctly reused in any

composite with operations for unit and op as long as these{ x(a,n)

operations are in turn steadfast.

The componentterate has no constraints in its context de-

The operation iterate* has the same specificaigg, o

(1) as iterate interate, but it computes the relatioiterate
more efficiently than iterate: the number of recursive calls is
linear in iterate, whereas it is logarithmic in iterate*. How-
ever, iterate* wouldchot be steadfast iterate. For exam-
ple, if we were to use iterate* in place of iterate ltar-
ate, then iterate* would be correct wrt (1) and (2) lber-
ate+Naturals, but it would not be correct wrt (1) and (2) in
Iterate+Integers, where, for instance, for

iterate(a, s(s@G(¥0v)

iterate* would computé instead of the correct answeta.
Thus despite the a priori correctness of unit and op in both
Naturals and Integers, iterate* would not be correct in
both Iterate+Naturals and Interate+Integers. Therefore
iterate* wouldnot be steadfast iiterate.

The reason for this is that iterate*, the constraints (5)
require that the parameter&indo of the context satisfy the
unit and associativity axioms. These imply that

x(a,ny&
x(a,n)&

x(a,ny&
X (a,n-) 2

if nis odd
if nis even

which means that wheneveis associativex can be com-

pendencies. To further illustrate the notion of steadfastnessputed in logarithmic time. So, if we were to use iterate*
we now consider a component whose context dependencieg place of iterate iriterate, then iterate* would be correct

include constraints.

Example 10.2 Consider the componetterate* (Figure 9)
obtained fromiterate (Figure 6) by adding the following

Iterate*

CONTEXT ZTER(D, o,)

INTERFACE
Operations: SiteTat67 Sunita Sop;
iterate’(unit, op);
Dependencies: D, o, e, unit, op;
constraints;

CODE
Code for iterate*

Figure 9. The Iterate component.

constraints to its context dependencies:
Vr:Deox = x
Vzy,z : Dz gbz) =y o

(these constraints stipulate theshould be associative) and
by replacing the iterate operationlierate by the following
operation iterate*:

(5)

Operation: iterate{ unit, op)
iterate(a,0,v) < unit(v)
iterate(a,n,v) < m+m = n,iterate(an, w),
op(w, w, v)
iterate(a,n,v) <+ m-BxE n, iterate(ap ,w),
op(w,), opf, a,v)

94

in Iterate+Naturals because herel] is the set of natural
numbersk is 0, o is 4+, and so they actually satisfy the con-
straints (5) anyway, even though these constraints are not
present inlterate. On the other hand, iterate* would not
be correct interate+Integers because herd] is the set of
integersk is 0, o is —, and since- is not associative, they

do not satisfy (5).

However, we can prove that iterate* is steadfadtén-
ate*, again assuming a priori correctness of operations for
unit and op defined in some other component. It will be cor-
rect in any compositéterate*+C as long a<C satisfies the
constraints (5) in the context dependenciefiefate*. For
example, as can be seen from the above discussion, iterate*
will be correct inlterate*+Naturals since+ is associative.

For something completely different, suppdéatrices is
a component with a context ei-dimensional square matri-
ces. Then in the compositeerate*+Matrices, D is the set
of m-dimensional square matricesjs them-dimensional
identity matrix, and since matrix multiplicatior is asso-
ciative, iterate* will be correct, where op computes matrix
products.

11 Discussion

Since a steadfast program is correct, and hence correctly
reusable, in all specialisations and instances of its context,
a component with steadfast operations, which we will call

Gary T Leavens
94

asteadfast componenwhen composed with another stead- OMT [11] or UML [12]. It may yet be an OOD framework,
fast component will also be steadfast. In other words, stead-.e. a group of interacting objects [6], such as frameworks
fastness is not onlgompositional but is also preserved in the CBD methodologgatalysis[3, 5]. It could even be
throughinheritancehierarchies. a design pattern or schema [4].

Consequently, in the context of system prediction (as We believe that our approach to component specification
shown in Figure 3) when composing steadfast componentscan enable predictable component assembly, which is cur-
not only can we be sure that the composite will be steadfast,rently an open problem in CBD. In addition, we believe it
but we can also predict the specification of the composite.can provide a hybrid, spiral approach to CBD [7] that is
This is illustrated in Figure 10. both top-down and bottom-up for CBD, as illustrated in Fig-

ure 12. First a library of steadfast components has to be

Al 8] c| (Requirements Spec] [Architectural Spec] ~ Top—down
Interface/Spec + Interface/Spec Interface/Spec degi n 3
Code Code Code 9
Steadfast Steadfast Steadfast | Library of steadfast components |
component A component B component C T
synthesis

Figure 10. Composing steadfast components. Correct¢soﬁware

analysis & |
transformation
In the context of modular specification and verificaton .| | T
(as shown in Figure 4), steadfast modules can be verified ves !
P ; ; ; Correct software ?
and the specification of the composite can be predicted, prior
to composition. This is illustrated in Figure 11. We under- Syn‘hesi
‘ Library of steadfast components ‘ Bottbm—up
Spec for C < + Figure 12. A spiral model for CBD.
c] Al El . _
Interface Interface | | Interface built. The nature of steadfastness, coupled with the use of
Code * Code Code priori reasoning then allows these components to be com-
Steadfast module C Steadfast module A Steadfast module B posed into larger systems in either a top-down (following

the traditionalwaterfall modelor the software architecture
approach [13, 1]), or bottom-up manner, or indeed a combi-

stand that current approaches to modular reasoning need t§2tion of both. _ _ _ _

know the specification of the composite before predicting . BOttom-up development in particular is more in keep-
if the composite will work according to its specification. If "9 With the spirit of CBD. Composition of steadfast com-
this is the case (as shown in Figure 4), then steadfastnesfONeNts can ShOW, Fhe _speC|f|cat|0n of the composite, and
offers the advantage of being able to predict the specifi- therefore the speuﬁca_\tl_o_n of any _soft_ware constructed can
cation of the composite prior to composition. Thus, with be compared with the initial specification for the whole sys-

steadfast modules, we can do system prediction as shown if€M- Guidance as to which components to ‘pick and mix’
Figure 10. can also be provided by component specifications.

Figure 11. Composing steadfast modules.

. Acknowledgements
12. Conclusion g
We are grateful to Murali Sitaraman and the reviewers

For lack of space, we have presented the intuition be'for their helpful comments in general, and for correcting our

h'.nd steadfastness by means of S|mplg examples. We hOp‘I:"nisunderstanding of modular specification and verification
this does not detract from its presentation.A full account of in particular.

steadfastness can be found in [8]. Steadfastness is defined
in terms of model-theoretic semantics. It is thus declarative
in nature. We believe that declarative semantics in generalR€ferences

will be important for lifting the level of abstraction.

Our approach to Specifying components is very generic_ [1] L. Bass, P. Clements, and R. Kazm&aftware Architecture
The component may be just a class or ADT. It may be a in Practice Addison-Wesley, 1998. _ _
module, in particular what Meyer [10] calls abstracted [2] R. Bourd_eau and B. H. Cheng. A formal seman’-[lcs for object
module which is the basic unit of reuse in the CBD method- Tgogdsel diagrams |EEE Trans. Soft. Eng21(10):799-821,
ology RESOLVE [14]. It may be an object model [2] as in '

95

Gary T Leavens
95

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]
[13]

[14]

D. D’'Souza and A. WillsObjects, Components, and Frame-
works with UML: The Catalysis ApproacAddison-Wesley,
1999.

P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. An ab-
stract formalisation of correct schemas for program synthe-
sis. Journal of Symbolic Computatip30(1):93-127, July
2000.

J. Kuster Filipe, K.-K. Lau, M. Ornaghi, K. Taguchi,
A. Wills, and H. Yatsu. Formal specification of Catalysis
frameworks. In J. Dong, J. He, and M. Purvis, editéhsc.

7th Asia-Pacific Software Engineering Conferenpages
180-187. IEEE Computer Society Press, 2000.

J. Kuster Filipe, K.-K. Lau, M. Ornaghi, and H. Yatsu. On
dynamic aspects of OOD frameworks in component-based
software development in computational logic. In A. Bossi,
editor, Proc. LOPSTR 99, Lecture Notes in Computer Sci-
ence volume 1817, pages 43-62. Springer-Verlag, 2000.
K.-K. Lau. Component certification and system prediction:
Is there a role for formality? In I. Crnkovic, H. Schmidt,
J. Stafford, and K. Wallnau, editor&roceedings of the
Fourth ICSE Workshop on Component-based Software Engi-
neering pages 80-83. IEEE Computer Society Press, 2001.
K.-K. Lau, M. Ornaghi, and SA. Tarnlund. Steadfast logic
programs. J. Logic Programming 38(3):259-294, March
1999.

G. Leavens. Modular specification and verification of
object-oriented programEEEE Softwarepages 72—-80, July
1991.

B. Meyer. Object-oriented Software ConstructioBrentice-
Hall, second edition, 1997.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Sorenson. Object-Oriented Modeling and Design
Prentice-Hall, 1991.

J. Rumbaugh, I. Jacobson, and G. Bodthe Unified Mod-
eling Language Reference Manu&lddison-Wesley, 1999.

M. Shaw and D. GarlarSoftware Architecture: Perspectives
on an Emerging DisciplinePrentice Hall, 1996.

M. Sitaraman and B. Weide, editolSomponent-based soft-
ware using RESOLV.ESpecial feature, ACM Sigsoft Soft-
ware Engineering Notes 19(4): 21-65, October 1994.

96

Gary T Leavens
96

A Pi-Calculus based Framework for the Composition and
Replacement of Components

Claus Pahl
Dublin City University, School of Computer Applications
Dublin 9, Ireland
cpahl@compapp.dcu.ie

Abstract

Evolution in component systems is critical with respect to
the maintainability of these systems. Systems evolve due
to changes in the environment or due to improvements of
individual components. Even though component technol-
ogy aims at reducing the dependencies between components,
necessary replacements of components might affect the com-
position of systems. We introduce a composition and re-
placement calculus based on the w-calculus, allowing us to
specify composition and to reason about replacements and
their effects.

1. Introduction

A formal semantics for components and component compo-
sition is essential if rigorous analysis and reasoning in the
development and maintenance of component systems shall
be deployed. Our objectives are a formalisation of basic
composition principles, similar to [1, 2, 3], and the provision
of a framework for change and evolution analysis. The mo-
tivation to use the w-calculus lies in a similarity between the
notions of mobility in the m-calculus and evolution in com-
ponent technology. Mobility is defined as the capacity to
change the connectivity of a network, i.e. to change the spa-
tial configuration. Evolution in large component system is
also about the change of connections between components.
Therefore, the w-calculus seems to be a suitable formal no-
tation to develop a framework for specification and reason-
ing about component composition and, in particular, evolu-
tion in these systems. As we will see later on, we will pro-
pose some change to basic 7-calculus semantics and develop
a type system reflecting component technology principles.
The result is a mixed calculus, based on m-calculus basics
and concepts from component technology. The type system
plays the role of the integrator. Types govern how names
can be used in process calculi [4]. They classify patterns
of behaviour, and they can also reflect connectivity and the
control mobility and evolution.

We essentially define a composition protocol with dif-
ferent phases: matching and connector establishment, in-
vocation and execution of the service, an invocation reply,
and, later on, dynamic replacements. The different phases
will be described by different transition rules. We argue
that a process-oriented look at component composition is of
major importance for the reliability and maintainability of
evolving systems. We will complement this process view on
compositions with methods to reason about replacements
of components in changing environments. The evolution of

97

systems is often neglected in formal approaches to software
engineering problems. Some papers have addressed dynamic
reconfiguration and replacement, see for example [5] or [6],
but most of these papers have addressed the problem from
a pragmatic or not fully rigorous point of view. We devise
a consequent approach in this direction, overcoming these
deficiencies, by formulating a formal framework of change
and reconfiguration for component composition.

Section 2 illustrates component composition. In Section
3 we introduce some basics of our composition and replace-
ment calculus. Section 4 focusses on contract-based match-
ing and connector establishment. The type system is in-
troduced in Section 5. Section 6 specifies the life cycle of
component composition, without looking at replacements.
Replacements and how to reason about their effect is the
subject of Section 7. Finally, we discuss related work and
end with some conclusions.

2. Components and Composition

Our component model is based on port-based components,
where ports represent services, with export and import in-
terfaces for provided and requested services. Two compo-
nent interfaces are presented below - Interface requesting
services and DocServer providing services - both part of a
document manipulation and storage system.

Component Interface
import services
servReqDoc (uri:URI) :Doc
servModDoc (doc:Doc,upd:Txt)
export services
openDoc (uri:URI)
saveDoc(uri:URI, upd:Txt)

The interfaces uses services from the server component to
request (load) and modify (store) documents.

Component DocServer
import services

export services
reqDoc (uri:URI) :Doc
modDoc (doc:Doc,upd: Txt)

Documents are identified by URIs — uniform resource iden-
tifiers. The request service reqDoc returns a document, but
does not change the state of the server component, whereas
the modification service modDoc updates a document on the
servicer side without returning a value.

Gary T Leavens
97

Service ports are points of access described in compo-
nent interfaces. We assume these ports to be specified in
some kind of logic that allows to express pre- and postcon-
ditions as abstractions for ports [7, 8], enabling the design-
by-contract approach [8, 9]. Hoare logic or modal logics are
suitable frameworks [10, 11]. A requirements specification
of the service user servModDoc could look like:

servModDoc (myDoc:Doc, myUpd:Txt)
pre valid()
post updated()

Documents shall be XML-documents here, which can be
well-formed (correct tag nesting) or valid (well-formed and
conform to a document type definition DTD). A service
provider specification could look like:

modDoc (doc:Doc, upd:Txt)
pre wellFormed()
post updated() A acknowledged()

A contract can be formed between interface and docu-
ment server. The service modDoc of the document server
matches the requirements of servModDoc - a service that
might be called in methods provided by the interface. modDoc
has a weaker, less restricted precondition - valid() implies
wellFormed() - and a stronger postcondition - the conjunc-
tion updated() A acknowledged() implies updated(). This
means that the provided service satisfied the requirements;
it is even better than requested.

We will neglect a detailled presentation of component
semantics in this presentation; our focus is on the compo-
sition semantics. The composition of components [12, 13]
will be defined using the w-calculus [14, 15, 16]. Interaction
is the composition principle. Ports represent services of a
component. We will distinguish different roles of ports, e.g.
whether a service is provided or requested. The semantics
of service execution is reflected in the type system through
pre- and postconditions. The type system is the link be-
tween the component and the composition semantics. How-
ever, the pre- and postconditions, forming a contract, are
also important for the composition process. A conformance
condition expresses that two ports match based on whether
a provided service satisfies the needs of a requested service.
Technically, the matching process is facilitated through con-
tract ports servModDocc and modDocc. The user interface
requires a service (annotation REQ) and the document server
provides a service (annotation PRO).

Interface = REQ servModDocc (servModDocs).Interface’

def

DocServer = PRO modDocc (modDoc;).DocServer’

The names are not relevant for components to match - only
the pre- and postconditions represented through types are.
Successful matching results in the establishment of a connec-
tor - a private channel between the components that allows
one component to use services provided by the other.

Interface’ & INV servModDoc;(doc,upd).Interface”

def —_—
DocServer’ = EXE modDocy(x1,x2).DocServer”

The user interface can invoke the service (INV) through the
interaction port servModDocy, which will trigger the execu-
tion (EXE) of modDoc; by the server. The composition, i.e.
establishment of a connector, is one of the key activities; the
other is replacement. Systems evolve over time, components

98

are replaced by improved or modified versions. Methods to
answer whether for example the user interface or the docu-
ment server can be replaced shall be introduced.

3. Calculus - Syntax and Type Basics

This section shall introduce basics of our calculus, such as
syntax of the notation and some type issues, before we look
at rules for component composition.

3.1 Syntax of Component Composition

The basic element describing activity in the w-calculus are
actions. Actions are combined to process expressions. Ac-
tions are expressed as prefixes to these process expressions:

m := PTYPE Z(y) | PTYPE z(y) | T

Actions can be divided into output actions Z(y) - the name
y is sent along channel (or port) = -, input z(y) - y is re-
ceived along z, and a silent non-observable action 7. We
have annotated these action prefixes by port types, which
will explain the role of the port with respect to life cycle ac-
tivities such as service request or service invocation. Here is
the full list of action prefixes, their port types and polarities
(types and polarities will be explained soon):

m u= REQ m¢(my) + Request
PRrRO n¢(ng) — Provide
INnv mr{a1,...a;,mr) + Invoke
EXE n;(z1,... ,Zk,NR) — Execute
REP Tr(b) + Reply
REs mg(y) — Result

The syntax of composition expressions involving the action
prefixes is the following:

P := vmP Restriction
P | P Parallel composition
\P Iteration
Yier .P; Summation
0 Inaction

Restriction means that m is only visible in P. Summation
m;.P; means that one m; is chosen and the process tranfers
to state P;. Iteration !P means that the process is executed
an arbitray number of times. This follows the presentation
of the m-calculus in [15]. We also need abstractions, i.e.
defining equations of the form A(a) = P4. Even though the
polyadic w-calculus is intended to be used, we often use the
monadic variant here in order to keep the notation simple.
The substitution {p/a}P means that b replaces a in P.

3.2 Ports and their Types

The entities in our composition system are values, ports and
components. Values are characterised by the usual value
domains as types. The list of basic types t1,t2,... shall
be assumed, but not explicitly specified. Components are
syntactically characterised by an interface with service sig-
natures, separated into import and export elements.

The most important entities are the ports. Each port p
is essentially a family of ports p = (pc,pr,pr). The first
port pc is the contract port, essentially an abstract interface
described by a signature, a precondition and a postcondi-
tion. ps is the connector activation (or interaction) port.
This port is used to invoke a service. The port pr carried

Gary T Leavens
98

me CTRr(SIG(TY, ..., Th, +CRE(T)),
PRD(PRE), PRD(POST))

ne Ctr(S16(TY, ..., T, CRE(T")),
PRD(PRE’), PRD(POST’))

mr CAc(Th,... ,Tn, CRE(T))

ny CAc(Ty,... ,Tn, CRE(T))

mR CRE(T)

Figure 1: Ports and their channel types.

the reply from the service invocation. We distinguish a port
type and a channel type for each port.

Port types describe the functionality of the port within
the component (e.g. contract or connector ports) and its ori-
entation (in- and out-ports). Port types Tp(p) or p :p t for
port p are denoted by 3-letter lower case abbreveations. The
annotations in the action prefix syntax (see Section 3.1) de-
note port types, e.g. ¢ is a request port; nc is the dual
provide-port: T,(mc) = REQ and Tp(nc) = Pro. Each
port has also an orientation - called the polarity; all ports
of one port family follow always the same orientation pat-
tern: +,+, — for requested (imported) services, saying that
contract and connector ports are output ports (+’) and the
reply port is an input port (—’), and —, —, + for provided
(exported) services. Each '+’ stands for an output capability
(the port can only send); ’—’ stands for an input capability
(the port can only receive).

Channel types describe what kind of entities can be trans-
ported: a contract port pc :c CTR(SIG, PRE, POST), a con-
nector activation or interaction port pr :¢ CAc(Th,..., Ty,
CRE(T)), and a connector reply port pr :c CRE(T). This
characterises the channel by specifying the expected capac-
ity - what data can be transported. It will constrain the
composition and interaction between components. Contract
ports can transport connectors, which are characterised by a
contract type. Connectors provide the connection between
components to invoke a service. Channel types Tc(p) or
p :c t for port p are denoted by 3-letter abbreveations start-
ing with an upper case character, see Figure 1.

A contract consists of a service signature, a pre- and
a postcondition. Connectors when transfered on channels
have to satisfy a contract type. On connector activation
ports, data values and a reply channel can be transfered;
on connector reply ports, data can be transfered. The key
criterion for matching, i.e. the succesful connection of two
components through a connector, are are contracts (this will
be explained in the next subsection). Opposite orientations
also have to match in a successful composition of compo-
nent ports. The signature for a remote method execution
is: S1G(Th,... ,T,,CRE(T)). This is an adequate represen-
tation, reflecting the fact that parameters are passed, and
possibly a result has to be transfered back on a channel with
a different capacity (type). For local method executions, the
usual notation Ty x ...x T, — T apply. Pre- and postcondi-
tions are formed using the predicate type constructor PRD.

Connector ports represent services. Connectors are chan-
nels that can carry data elements - for the connector activa-
tion additionally a reply channel. Connector ports and con-
nector reply ports are only used as restricted (private) chan-
nels between components that match based on contracts.

99

This means that these channels are only available to these
two components.

3.3 Subtypes

In principle, the definition of a subtype relation is possible
for all kinds of entities in our notation. However, we will
focus on ports here. The subtype relation will help us to
determine whether two ports, representing services, match
and whether they can be composed. Later on, this con-
cept will also be used to determine consistent (effect-free)
replacements.

We have already seen that the channel types of con-
tract ports are contracts consisting of a service signature,
a precondition and a postcondition. For a required ser-
vice m¢ :c CTR(SIG,PRE,POST) and a provided service n¢ :c
CTR(SIG’,PRE’,POST’), we say that nc matches mc if

SIG = SIG’ A PRE — PRE’ A POST’ — POST

This is the combination of two classical refinement relations
(weaken the precondition and strengthen the postcondition)
from the Refinement Calculus [17, 18], see also [19] for other
matching approaches.

4. Contract Matching and Connectors

We define the operational semantics of component compo-
sition in this section. mc,nc are contract ports, mp,n;s
are connector activation or interaction ports, and mg,ngr
are connector reply ports. (mc¢, mr, mg) is an output port,
i.e. actively requests services from other components, and
(nc,nr,ng) is an input port, providing services to other
components. Ports are typed. The connector ports (ac-
tivation and reply) are restricted to components matched
based on contracts. We will introduce a number of transi-
tion rules describing state changes, including activities such
as contract matching, connector establishment, interaction
and interaction reply. The rules will define the transition
semantics. They will replace some of the transition rules for
the classical w-calculus, in particular the reaction rules - see
e.g. [16] Table 1.5. Other rules are still valid.

4.1 Contracts

Two components can react, i.e. can be connected, if their
contract types (end points of possible channels) form a sub-
type relationship. This changes the original w-calculus re-
action rule which requires channel names to be the same.
Here we only require a subtype relationship between the
ports. The receiver can accept an input based on the type,
not the name. We assume the following channel types t;n, =
CTR(SIG, PRE, POST) and t,, = CTR(SIG’, PRE’, POST’) for
contract ports m¢ and nc, respectively. The contract type
tno is a subtype of ¢, if the precondition is weakened and
the postcondition is strengthened. Signatures are assumed
to be equal. The following transition rule — the contract
rule [T-CTR] — describes matching of services:

REQ mig(ms).C "5 ¢ Pro ne(ng).P S0 P
REQ mc{m1).C|PrO nc(n;).P - C~P

(@

where side condition is ® = t,, < tm,. The connection
def

C~P = vc({gm1)C|{c/ni}P) introduces a fresh variable ¢
- free in C and P - creating a private (restricted) channel
¢ called the connector. This rule expresses the connector

Gary T Leavens
99

establishment. Ultimately, we will chain together several
components that will import services from others.

A second typing constraint is hidden. REQ and PRO de-
note port types, i.e. m¢ :p REQ and n¢ :p PRO. These are
type annotations to the ports. Here, the port types match:
REQ is the complement of PRO, and the polarities are op-
posite. We write 7 (mc) ~ 7 (n¢) in this case.

Type systems for the mw-calculus usually constrain data
that is sent, here we constraint reaction (the interaction be-
tween agents). The contract rule cannot be translated to the
match-rule found in some w-calculus variants. Our contract
rule is similar to transition rules describing reaction that are
based on bounded output Z(z) where z is introduced as a
bound variable forming a restricted channel [16]. We have
chosen to introduce a fresh variable ¢ instead.

4.2 Connectors

We assume that a private channel ¢ - the connector - has
been established between client and provider. This channel
is used by the client to invoke a service nr at the server side.
Parameter data a : t, with ¢, < ¢, and a reply channel mp :
tmp are send to the provider. The connector activation
rule [T-CAc] is defined as follows:

Inv m_j(a,mR).Cm_Im—’TR)C ExEe nz(x,nR).PnI(w—’gR)P

INV mr{a, mg).C|EXE n;(z,ngr).P — C~{a/x}P

where ® = t,; < tym;,a : pre. The types tn,; and t,, are
the connector activation types CAc(t1,... ,tm, CRE(t)) and
CAc(ty, ... ,t,, CRE(t)), respectively. The reply channel is
again a private channel between the two components that
replaces mg and ngr. Type equality (or a subtype relation)
for m; and n; is not required if we can guarantee that the
connector types satisfy the contract types and that the con-
tract matching has successfully been executed. A protocol -
specified in form of a component life cycle - can guarantee
this. We will discuss the side condition a : pre shortly.
The last rules is the connector reply rule [T-CRE]:

REs mr(y).C "2YC Rep nr(b).P EY P
RES mg(y).C|REP ng(b).P — {py)C~P

(®

where ® =t,, <tmpy,b: post. We assume t, <t,. b is the
result of the internal computation, i.e. b is a function of .
The contract with pre- and postconditions can be re-
flected at the connector level. We associate pre- and post-
conditions with the in- and out-ports. Input a is required
to satisfy the precondition pre and output b is required to
satisfy the postcondition post. These assertions are obli-
gations, formalised by contracts, to be satisfied by client
(pre) and provider (post) at runtime. This attachment of
obligations to the connectors results in more symmetry and
links contracts and connectors. Pre- and postconditions are
formulas, but here they are evaluted at runtime when the
corresponding method is invoked and executed.

5. Types and Subtypes

We use the type system to control the correct establishment,
use and replacement of connections between components.
Especially subtypes are important for this purpose.

We use typing rules to describe our type system. Syntac-
tial aspects of our notation have been dealt with in previous

(®

100

T == B Basic type

| L Link type

| SiG(T'x...xT xL) Signature

| PrD(T) Predicate
L == PC Port and channel type
P := + (REQ|PrO|INV |

ExE | REC | REP)
CTrR(T'xT xT)
CAc(T x ... xT x L)
CRE(T)

Port type

Contract

Connector activation
Connector reply

Figure 2: The syntax of the type language.

sections. We will address the relation between the type sys-
tem and the transition semantics. The type safety property
guarantees that well-typed expressions (expressions whose
types can be infered using the type system) do not fail under
transition. We show that the well-typedness is preserved.

5.1 Typing Rules

A typing context I' is a finite set of bindings - mappings
from names to types. Three types of judgments are used:

Tka:T name z has type T'
'S T typeS is subtype of T
I'+P expression P is well-typed

The type language syntax is defined in Figure 2. The con-
structors CTR, CAc, CRE are the link-type constructors.
Their purpose is to classify channels based on the data that
is transfered along them. We leave the set of value types un-
specified. We assume that there is at least one basic type.
S1G and PRD are standard constructors for service signatures
and predicates, the other type constructors are application-
specific to the component context.

The semantics of the type system will be defined by typ-
ing rules for basic types, type constructors, subtypes and
process expressions. We will now address these different
kinds of rules, see Figure 5.1. Transition rules based on
these typing rules have been given in the previous section.

Typing rules for the type constructors (contract, connec-
tor, signature, predicate) shall be omitted, except for the
one for contracts, I-CTR. If the three names s, p1 and p-
are of type signature, predicate, and predicate, respectively,
then the contract CTR(s,p1,p2) is of contract type:

CTR(SIG(T1, ... ,Th, CRE(T), PRD(F1), PRD(F3))

Subtype relations are in principle possible between types
constructed with the same constructor. Two structural rules
contribute to the definition of the subtype relation <: the
reflexivity rule S-REFL and the transitivity rule S-TRANS:

S=5T
[S—REFL] m
'eES<T TH+HTLU
TFS<U

They show that < is a preorder. The subtyping rules for
signatures and predicates are S-S1G and S-PRD - see Figure
5.1. The names COND, PRE, POST, SIGN and their primed
variants are type variables. A condition is subtype of an-
other if it implies it: cOND < CcOND’ if COND — COND’. A

[S-TRANS]

Gary T Leavens
100

I'ks:. SIG(T1,..

.,T,,CRE(T)) T'Fp1: PRD(T) T F p3: PRD(T)

[I-CTR]

U
[S—SIG] r |_ T1 S Tl

'+ CtR(s,p1,p2) :c CTR(SIG(TY,..

., T, CRE(T)), PrRD(T'), PRD(T'))

T'+T,<T, T+ CRE(T) < CRe(T")

I+ Sia(Ty, ...

,Th, CRE(T")) < S1G(T1, ..

., T», CRE(T))

COND’' — COND

[S-PRD]

[S-CTR]

I' - PRD(COND') < PRD(COND)

' PRE < PRE’ T'F PosT’ < POST T'I siG’ < sig

THT <T

I' - CTr(S1G’, PRE’, POST’) < CTR(SIG, PRE, POST)

I'+T, <Ty T+ CRE(T) < CRE(T)

[5-CA] T Gao,

., T4, CRE(T")) < CAc(Th, ..., Tk, CRE(T))

TFT' <T

[S-CRE]

T F CRE(T") < CRE(T)

Figure 3: Typing rules.

contract forms a subtype of another if its precondition is
weakened and its postcondition is strengthened - see S-CTR
- where SIG, PRE, POST, SIG’, PRE’, and POST’ denote signa-
ture and predicate types. The port orientation also has to
be considered. We assume that ports do not change their
orientation. For connector activations we expect subtype
relations for the value types to hold - see S-CAc. This def-
inition is - similar to the signature subtypes - contravariant
on the reply channel. A connector reply channel is a sub-
type of another if the value types that can be carried form
a subtype - see S-CRE. Subtypes for the value kind shall be
neglected for the rest of the paper - which has as a conse-
quence that there are no proper subtypes between signatures
and connector activations and replies.

5.2 Type Safety

Type safety concerns the relation between the type system
and the operational semantics. The operational semantics
are defined as transition semantics, specified by rules such
as contract matching and connector establishment. Type
safety comprises two issues. Firstly, evaluation should not
fail in well-typed programs - we will introduce a notion of
well-typedness shortly. Secondly, transitions should preserve
typing. The judgment I' - C' denotes the well-typedness of
composition expression C. This will be the construct to
investigate type preservation under transition.

We need to define a notion of satisfaction before we can
define well-typedness. A connector type satisfies a contract
type if the signatures correspond and, if the precondition
holds, the execution of the service attached to the connector
port establishes the postcondition.

Definition 5.1. A connector type Tr = CAc(Th,... , Ty,
CRE(T)) satisfies a contract type Tc = CTR(SIG, PRE, POST),
or Tt |E Te, if for a service port p the connector port pr sat-
isfies the following constraints: S1G(T1,...,Tn,CRE(T)) =
SIG and, if PRE holds, then the execution of pr, if it termi-
nates, establishes POST.

We assume an analogous definition of satisfaction between

101

data types and connector reply types and their connector
activation type.

Definition 5.2. We define well-typedness for simple ac-
tions as follows:

e I' F REQ mc(m1) if Te(mr) E Te(me) — otherwise
REQ mc(mr) fails.

o I' F PRO nc(n1) if Te(nr) |= Te(nc) - otherwise PRO
nc(nr) fails.

o T F TN mr{a, ma) if type(a), To(me) = To(mi) -
otherwise INV mr{a, mr) fails.

o I' - EXE ni(y,nr) if type(y), Te(nr) | Te(nr) - oth-
erwise EXE ny(y,nr) fails.

The execution of an action fails, if the data sent along the
channel does not satisfy the channel constraint. A reaction
fails if both participating actions are well-typed, but the
type constraint is not satisfied.

Definition 5.3. The well-typedness of parallel composi-
tions is defined by rule [W-PARCOMP]:

'+ REQ mc{m;) I'FPrO ncg(nr) T'F Te(ne) < Te(me)
I' - REQ mc(m1)|PRO nc(nr)

If I' v REQ mg(mi) and T' + PRO nc¢(n1), but not T'
Te(ne) < Te(me), then REQ mc{mr)|PRO nc(nr) fails.

Well-typedness guarantees correct composition and in-
teraction behaviour according to the specifications given
through the type system (pre- and postconditions) constrain-
ing behaviour and matching. The objective later on will
be to show whether replacements preserve well-typedness;
for example to show that if I' F REQ mc(ms)|PRO nc(nr)
and if port m is replaced by m', then to show whether
I' - REQ m{m}}|PRO nc(ns) holds, i.e. whether correct
behaviour is preserved by replacements.

We shall note type safety properties as conjectures only,
without a formal proof.

Gary T Leavens
101

Conjecture 5.1.

1. Substitution lemma: if T H C and T Fx : T,v :
then I' F {u/x}C.

T,

2. Ewvaluation cannot fail in well-typed programs: if '+ C
then the execution of C does not fail.
8. Transition preserves typing: if I' F C1 and C1 — C»

then I' - Cs>.

5.3 Types as Formulas

There is a relationship between the contracts and connector
types. Contract types can be see as Hoare logic or dynamic
(modal) logic formulas consisting of a precondition and a
postcondition, complemented by a signature. We have a
two-layered type system with a layer of contract types and
a layer of connector types with a notion of satisfaction be-
tween them. These types correspond to the distinction of
specification and implementation for a component. The con-
tract type CTR(SIG, PRE, POST) corresponds to the formula
PRE — [n(a1,...ax)] POST in dynamic logic where n : SIG.
This refers to the specification of services of a component.
The lower type layer corresponds to the implementation.
Types for parameters are value types.

6. Client and Provider Life Cycles

In the previous sections, we have seen several stages in the
life cycle of a component such as service matching and con-
nector establishment, or service invocation. The full life
cycle of clients, providers and systems consisting of both
clients and providers shall now be specified in a standard
form. The client, parameterised by a list of required ser-
vices, can be specified as follows:

C’i(ml,... ,ml) _
REQ m&(mp).[(INV mi{a', my).RES my(y").0)

REQ mb(m})./(INV mb(a!, mk).RES mk(y').0)

def

Requests have to be satisfied before any interaction can hap-
pen. Once a connection is established, a service can be used
several times. In order to function properly all service re-
quests need to be satisfied - expressed by the parallel com-
position of all individual ports.

Service providers need to be replicated !P in order to
deal with several clients at the same time. Otherwise their
behaviour is the dual to that of the clients.

P(ni,...,ng)

I(PrO n&(n})./(EXE n}(y!,nk).REP nk(b).0)
+

def

+
PRO nf (n¥).!(EXE nk(y*,n%).REP nk (b).0))

A provider does not need to engage in interactions with all
its ports, which is modelled by using the choice operator

instead of the parallel composition.
Clients and a server are composed in parallel CompSys <«
P(na, i) | Cr(mig e ymiag,) | oo | Ci(miy, .. i)

to form a composed system. Another case which also needs

102

to be considered is that a component can be both client and
provider, i.e. can both import and export services.

Comp = (REQ mb(@m ...|REQ mllc(mlf).ﬂ).
[N Inv mi(...).REC mF (...).0
+
+
mh R!
INv mi(...))REC m7" (...).0)
+
P(ny,...,n))

The requirements have to be satisfied, i.e. connectors have to
be established, before any service can be provided. A service
which is provided and actually invoked can then trigger the
invocation of imported services. The specification of com-
posed systems does not involve the possibility for evolution
- through the replacement of components - so far. This will
be looked at in the next section.

7. Replacements and Evolution

In evolving systems, components might change in their spec-
ification or implementation, or are replaced by other compo-
nents with different specification and implementation. Two
questions arise. Firstly, can a component be replaced by
another component without affecting the behaviour and the
overall consistency of the system? This can be answered
using a static analysis based on the component contracts.
Secondly, what are the consequences if a replacement fails?
This can affect a running system. The analysis has to be
carried out based on the actual connectors between compo-
nents in a running system. We assume that only a single
component is replaced by another at a time. Components
are the unit of change.

We will address replacements based on the type system
— statically and dynamically — and the determination of ef-
fects if such a replacement results in inconsistencies. Types
are explicit in our notation. That will allow us to change the
type (and implementation) of a component, see Section 7.1.
This can even be done dynamically for a running system,
see Section 7.2. In case the types cannot be preserved, the
effects of a change need to be determined, see Section 7.3.
We shall look at replacements firstly as a meta-construct,
then we will introduce it into the notation. We assume that
replacing a component means replacing existing ports, pos-
sibly adding new ones. We discuss the replacement of a sin-
gle port only in order to illustrate the issue. The following
definitions formalise a consistent (effect-free) replacement.

Definition 7.1. A context X is obtained when a hole
[] replaces an occurrence of 0 in a process expression. We
write X[P] for the replacement of [.] by P in X.

Definition 7.2. Given an arbitrary context X, a com-
ponent (a process expression) C can be consistently re-
placed by a component C', if T + X[C] implies T + X[C"].

This describes the preservation of well-typedness under re-
placement. It guarantees that replacements do not affect
the composition behaviour.

Proposition 7.1. If T - C implies T + C', then T +
X|[C] implies T + X[C"] for all contexts X.

ProOF. Obvious. [

Gary T Leavens
102

The dynamic replacement analysis based on types gives more
flexibility. However, the result might be an effect on other
components in form of a change of connections (mobility).

7.1 Replacement and Subtypes

Changes in structure - reflected by changes in connector
types - are usually difficult to deal with, but changes in
behaviour - here reflected by changes in contract types -, do
not always affect the overall consistency of a composition
(the comnsistency is affected if the specified behaviour is not
preserved). Preservation of well-typedness is the technical
criterion for this kind of analysis.

Since our aim is to determine whether one component
can replace another, we can consider the type system and
its subtypes. We will look at bound names in providers
and free names in clients in particular. We do not consider
type equivalence here; our concern is the replacement of one
component by another relying on the subtype relation.

Clients, or service requestors, shall be addressed first. A
port m = (m¢ : t¢,mr : t;,mpg : tr) shall be replaced by
m' = (mg : tg, my : th,mgr’ : tr'). Later on, we will assume
that names do not change, only their types will.

In some situations, replacement preserves well-typedness:
for I' - X[C] and C' replaces C, we get I' - X[C'] for any
context X. This shall now be investigated - firstly for a
single component.

Proposition 7.2. A requested service port mc :p REQ
can be consistently replaced by a port mg 1 REQ if

Tp(me) = Tp(me) A Te(meo) < Te(me)

PROOF. m is a refinement of m’. m’ has consequently a
stronger (more restrictive) precondition and a weaker (less
specific) postcondition. T' F ml,(m;) if T' F mg(m;) and
Te(mg) < Te(me) and we assume that To(m}) < Te(mr)
for connectors. Therefore, well-typedness is preserved. [

We shall look at this issue considering one particular con-
text: that of a parallel composition where a client and a
provider match. In this particular context, we can loosen
the constraint for well-typedness.

Proposition 7.3. A component C' can replace a client
component C in a composition C|P preserving well-typedness,
i.e. TFC|P =T F C'|P, if Te(nc) < Te(mg) for a service
n provided by P, a service m requested by C and replacement
m' for m.

PROOF. Suppose a composition C|P exists where n of P
is connected to m of C, i.e. Te(nc) < Te(me). As long as
Te(nc) < Te(mp) the provider satisfies the requirements.
This means that C’ can replace C without affecting the be-
haviour of the composition. Well-typedness as formulated
in the well-typedness rule for compositions (Definition 5.3)
in Section 5.2 is preserved. [

Strengthening the client specification might be accept-
able. A refinement mg of mc¢ is acceptable as long as
Te(ne) < Te(me) is guaranteed. The condition Tc(mc¢) <
Te(mg) does not need to be satisfied, but would, if true,
guarantee the well-typedness of the replacement. Proposi-
tion 7.3 is more flexible than Proposition 7.2, but Propo-
sition 7.3 can only be checked dynamically for a composed
system. This condition would have to be checked for all
connections in a running system.

103

We have a similar situation for the service provider.

Proposition 7.4. A provided service port nc :c PRO can
be consistently replaced by a port ng :c PRO if

To(nc) = Tp(ne) A Te(ne) < Te(no)
PROOF. Analogously to Proposition 7.2. [l

Here, refinements are always permitted as replacements.
Analogously to clients, replacements are consistent (effect-
free) as long as the connector remains intact.

Proposition 7.5. A component P' can replace a server
component P in a composition C|P preserving well-typedness
if Te(ng) < Te(me) for a provided service n connected to m
and the replacement n’.

PROOF. Analogously to Proposition 7.3. [l

For this form of analysis we have looked at contract ports
and their types only. Firstly, because the contract matching
is the crucial activity; we essentially consider only contract
port related activities as observable. Secondly, their chan-
nel types involve the contracts - which the connectors are
expected to oblige to. The client is expected to guarantee
the precondition and the provider is expected to guarantee
the postcondition if the precondition is satisfied. The types
of the connector and connector reply ports have therefore
been neglected.

7.2 Dynamic Replacement

In order to allow dynamic compositions and replacements,
we introduce a new feature into our notation. We introduce
an explicit configuration CFG s(p : tp) for a port that allows
components to change their specification dynamically:

Client; < (CFG s(m : tn).Ci{m))
Provider = (CFG s(n:t,).P(n))

where C; and P are defined as in Section 6. The port spec-
ification and implementation, i.e. contract and connectors,
are provided by some external process.

Ignoring name changes - they can always be introduced
easily via renamings - this construct essentially allows us to
change the type of a port dynamically. Changes in contract
types can be dealt with. The type system shall therefore be
revisited. Ports are associated with types, e.g. the typing
context I' can contain a binding m¢c — CTR(SIG,PRE,POST).
These associations in the typing context can change through
the execution of for example

CraG s(m¢ : CTR(SIG’,PRE’,POST’))

where SIG,PRE,POST and SIG’,PRE’,POST’ denote signature
and predicate types. We assume that the connector types
do not change. The configuration has an effect on the type
context. The semantics of CFG s(p : tp) is that of a dy-
namic declaration on I'; we write I[CFG s(p : tp)]. We need
an initial configuration for a port, but a replacement can

Gary T Leavens
103

essentially happen at any time:

def

c
Cl

ICFG s(mc : tm).C'{mc)
(CFrG s(mc : tmg).C'{mc)
+
REQ mc{mi).(

CFG s(mc : tmg)-C'{mc)

def

+

I(INv Wz . .)-(
CFG s(mc : tmg)-C'{mc)
+

REC mg(...).0)))

This describes that a replacement will always result in a re-
establishment of the connector, i.e. the request for a service
will be made again. If we want to make use of the results of
well-typedness preserving replacements (a re-establishment
of connectors is not necessary in that case), we need to make
this explicit in the notation. We introduce a type-based
guard, remotely similar to the match-operator found in some
m-calculus variants: [T'J] w.P where T'J is a boolean expres-
sion based on a type judgment. The type judgment acts as
a simple condition making the typing context explicit in the
notation. In our situation, we could specify

oo .CFG 8(mc : tme) [~(T F O)]C(mc). ...

expressing that only if typing is not preserved, the re-estab-
lishment of a connection is necessary after a replacement.
The substitution of the type context can be formulated
in two dynamic typing rules based on results from Section
7.1. Proposition 7.2 proves the soundness of the following
client replacement rule [R-CRPL] for the type system:

T'Fme:icte F"Tnc:pREQ
L[CFG s(my : tp)] F mg p th

(tc <te

where we replace mc : tc by mc : t'C. We assume that the
signature of the port m does not change. We also assume
that ¢ is a contract type. The rule expresses a substitution
in the type context.

Corresponding to the replacement rule for clients, we can
formulate a provider replacement rule [R-PRPL] - based
on Proposition 7.4.

I'kFnc:wcte T Fnc:pREQ

(te <tc
T[CFG s(nl, : t,)] F niy 1p t,

Note that only the type requirement for the contract has
changed. The execution of the CrG-action does neither
affect the composition nor the component state. It only
changes the type context dynamically.

Proposition 7.6. Replacement based on the rules client
replacement [R-CRPL] and provider replacement [R-PRPL]
preserves well-typedness. For T'F C and C' replaces C by
one of the rules, we get T' - C".

PRrOOF. Follows from Propositions 7.2 and 7.4. [

Similar rules for dynamic replacements can be defined
based on Propositions 7.3 and 7.5. Methods to analyse and
reason about replacements will be addressed next.

7.3 Non-preserving Replacements

The first step in replacing components is always an analy-
sis of types. Based on these criteria a component might be

104

replaced consistently. In case the replacement has to take
place - for example due to changes in the execution environ-
ment (technical, legal, etc.) - but does not result in a consis-
tent replacement, then the effect of the replacement on other
connected components has to be determined. This could
again be done statically by looking at all potential compo-
sitions based on the overall system specification (all clients
and providers composed in parallel), but should rather be
limited to those components actually connected to a com-
ponent in form of connectors (and components connected to
those) in a composed system.

Starting point for this dynamic analysis is the network of
connected components at a certain moment of time. This is
the flowgraph of the system, which describes the structure
of the system in terms of its linkages between components -
the concept of lowgraphs to describe the spatial structure of
connected processes is introduced in [15] Chapters 4.1 and
9.3. Flowgraphs and dependency analysis based on contract
types shall now be looked at. A component export depends
on the component’s import; the import depends on another
component’s export. This dependency relation is transitive
and allows us to determine which other components are po-
tentially affected if one component has to be changed. The
simple dependency relation needs to be refined. The reason
is that a change in the export interface of one component (to
the worse) might still satisfy the requirements of a service
request. In this case there is no further effect. In case a
second component is affected, then it can be tried to replace
this component as well (using static analysis).

Definition 7.3. Two kinds of graphs shall be introduced.
A flowgraph is a graph where nodes are ports mc, my, mg,
ne, nr, NR, ... and edges are connections (mc,nc), (mr,nr),
(mgr,nR),... The edges are directed and express depen-
dencies. (my,ny) expresses that a request my depends on a
provided service ny. A dependency graph is a flowgraph
extended by component internal dependencies, e.g. (ny, my)
saying that export nr depends on import my. Thus, a de-
pendency graph has two kinds of edges: edges (my,nr) are
connectors between components and edges (nr,mr) are in-
ternal dependencies. If (p1,p2) and (p2,ps) then (p1,ps).
Types (port type and channel type) shall be associated with
each port node.

Semantically the dependency graph is a bipartite graph de-
fined on two different relations: the subtype relation between
components and component-internal dependencies between
service exports and services imports. A component needs to
satisfy its imports in order to provide services to other com-
ponents. By default, all combinations between input and
output services are included in the dependency graph. A
more precise account of internal dependencies can be derived
from a component life cycle specification (see specification
of Comp on page 6), which describes the extenally visible
interaction behaviour of a component. Requests that occur
before a service provision indicate a potential dependency.
This could be refined explicitly by the component developer,
but this would require to consider the actual service imple-
mentations.

The well-typedness of a composition shall be expressed
by a consistency notion for dependency graphs.

Definition 7.4. A dependency graph (or a flowgraph) is
consistent if for all edges (m,n) of the connector kind:

Te(n) < Te(m) A Tp(m) = Tp(n)

Gary T Leavens
104

A graph update is an update of type associations for
nodes (ports). This corresponds to the replacement of type
bindings I'[CFG s(p : tp)] in type context I'.

Definition 7.5. If a dependency graph is not consistent
for a connector edge (p2,p1), then the effect of the incon-
sistency is the collection of all (pi,p;) withi > 2,5 > 1 such
that p; depends on pi.

The effect of an inconsistency can be calculated based on
the closure of the dependency relation. Classical algorithms
can be used here. Therefore, this shall be neglected.

8. Related Work

A composition language for components which is also based
on the 7-calculus is presented in [20, 21]. A variation of the
m-calculus is used to realise a composition language, called
P1ccoLA, which supports various forms of components, and,
thus, various composition mechanisms. The basis is a for-
malisation of interacting objects as processes. Key concepts
are glue code for component compositions and adaptation,
and a scripting language to express this glue code.

Catalysis is a development approach building up on the
UML incorporating formal aspects such as the pre- and post-
condition technique [22]. Catalysis uses ideas from formal
languages such as OBJ, CLEAR or EML. The concept of the
connector that we have used here is motivated by the Catal-
ysis approach. There, connectors allow the communication
between ports of two objects. A connector defines a proto-
col between the ports. Several other authors also address
contracts based on pre- and postconditions for the UML,
see e.g. [9]. The combination of the pre- and postcondition
technique and refinement calculi is explored in e.g. [23].

KobrA [24] is another approach which combines the UML
with the component paradigm. The basic structuring mech-
anism is the ¢s-component-of hierarchy, forming a tree-struc-
tured hierarchy of components, i.e. sub-components. Each
component is described by a suite of UML diagrams. A
component consists of a specification (an abstract export
interface) and a realisation.

An early version of this paper has appeared in [25]. There
we also looked at the connection between the mw-calculus for
component composition semantics and modal logics. In [25],
we addressed the application of the framework to the Uni-
fied Modelling Language UML [26]. The connector idea is
taken from [22]. In another paper [27], we have used a vari-
ant of the A-calculus to define service requests and provisions
using reduction as the mechanism for matching between ser-
vices. The variant is called Ar-calculus [28] adding a flexible
parameter (matching) concept to the A-calculus. This An-
calculus can be interpreted in object structures. We have
used a m-calculus variant here, because it offers multiple
(concurrent) connections and it allows to model two layers:
contracts and connectors.

Walker [29] introduces object intercommunication into
the m-calculus. In our approach the user (the client) is the
active entity which initiates the establishment of the connec-
tions. In Walker’s formalisation, the service provider also
provides the communication channels. The service user ac-
quires the contract channel, then acquires the interaction
channels via the appropriate contract channels and finally
uses the interaction channels to invoke methods of the ser-
vice providers.

105

9. Conclusions

The suitability of the 7-calculus for the definition of a com-
ponent composition framework has recently been demon-
strated, see for example the PhD-theses [30] and [31]. The
idea of using a process calculus to model component com-
position has here been carried further by exploiting the sim-
ilarity of mobility and evolution. We have developed a sim-
ple framework for the determination of effects of changes in
composed systems. Our framework addresses in particular
the problem of replacing single components in a system.

Mobility - the change of connection between components
- is the key feature in the m-calculus. We have introduced
evolution through replacement into our variant. This con-
cept is somewhat different from mobility. Replacement is
more fundamental since it is a meta-operation affecting the
definition of the system (in particular the type system) un-
der consideration. Replacement can cause mobility - the
change of connections - as the result of the change in types.
Replacement - as we have seen - can be introduced into the
calculus, resulting in a dynamically typed calculus.

Transitions in the system based on the establishment of
new connections occur in several variants. Reaction between
two components is constrained by port types and channel
types. Ports of different types match under different circum-
stances, formalised by a subtype relation. The reactions are
transitions in a transition system, whose states reflect the
state of composition that ports are in. Each port can pass
through different composition stages - expressed by the life
cycle for clients and providers.

Bisimulations and similar relations of equivalence between
processes are essential concepts in the w-calculus for com-
paring processes. This theory could be applied in our con-
text, if we would consider the replacement of systems of
composed components. In that case, we would only be in-
terested in the externally observable behaviour of these sys-
tems. Then, weak bisimilarity could be the tool to define
and analyse replacements of compositions. However, our as-
sumption here has been that single components are the unit
of change. Consequently, we have based our replacement
analysis mainly on the type system.

Some component technologies provide features for the
discovery of services. This is an implicit process here, de-
scribed by the contract rule. The overall model does not
involve an intermediary. The CORBA framework for the
interaction of remote objects is based on an object request
broker. Here, this functionality is implicit. In an exten-
sion of the approach, an explicit broker could be considered.
Another element of future work includes the exploration of
the relationship of modal logics and the type system for our
composition and replacement calculus.

References

[1] E.K. Nordhagen. A Computational Framework for Ver-
ifying Object Component Substitutability. PhD thesis,
University of Oslo, November 1998.

[2] W. Weck. Inheritance Using Contracts & Object Com-
position. In Proceedings 2nd International Workshop
on Component-Oriented Programming WCOP’97. Turku
Center for Computer Science, General Publication No.5-
97, Turku University, Finland, 1997.

Gary T Leavens
105

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Cimato and P. Ciancarini. A Formal Approach to the
Specification of Java Components. In B. Jacobs, G.T.
Leavens, P. Miiller, and A. Poetzsch-Heffter, editors,
Formal Techniques for Java Programs. Tech. Rep. 251,
University of Hagen, 1999.

B. Pierce and D. Sangiorgi. Typing and Subtyping in
Mobile Processes. Journal of Mathematical Structures in
Computer Science, 6(5):409-454, 1996.

N. De Palma, P. Laumay, and L.
ard. Ensuring Dynamic Reconfiguration Con-
sistency. In Proceedings 6th Int. Workshop on
Component-Oriented Programming WCOP2001.
http://research.microsoft.com/users/cszypers/events/,
2001.

Bellis-

L. Tan, B. Esfandiari, and B. Pagurek. The Swap-
Box: A Test Container and a Framework for Hot-
swappable JavaBeans. In Proceedings 6th Int. Workshop
on Component-Oriented Programming WCOP2001.
http://research.microsoft.com/users/cszypers/events/,
2001.

J.B. Warmer and A.G. Kleppe. The Object Constraint
Language — Precise Modeling With UML. Addison-
Wesley, 1998.

G.T. Leavens and A.L. Baker. Enhancing the Pre- and
Postcondition Technique for More Expressive Specifica-
tions. In R. France and B. Rumpe, editors, Proceedings
2nd Int. Conference UML’99 - The Unified Modeling
Language. Springer Verlag, LNCS 1723, 1999.

L.F. Andrade and J.L. Fiadero. Interconnecting Objects
via Contracts. In R. France and B. Rumpe, editors,
Proceedings 2nd Int. Conference UML’99 - The Unified
Modeling Language. Springer Verlag, LNCS 1723, 1999.

K. R. Apt. Ten Years of Hoare’s Logic: A Survey — Part
I. ACM Transactions on Programming Languages and
Systems, 3(4):431-483, October 1981.

Dexter Kozen and Jerzy Tiuryn. Logics of programs. In
J. van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, Vol. B, pages 789-840. Elsevier Science
Publishers, 1990.

O. Nierstrasz and T.D. Meijler. Requirements for a Com-
position Language. In P. Ciancarini, O. Nierstrasz, and
A. Yonezawa, editors, Object-based Models and Lan-
guages for Concurrent Systems, pages 147-161. Springer-
Verlag, 1995.

G.T. Leavens and M. Sitamaran. Foundations of
Component-Based Systems. Cambridge University Press,
2000.

R. Milner, J. Parrow, and D. Walker. A Calculus of Mo-
bile Processes - parts I/II. Information and Computa-
tion, 100(1):1-77, 1992.

R. Milner. Communicating and Mobile Systems: the m-
Calculus. Cambridge University Press, 1999.

D. Sangiorgi and D. Walker. The m-calculus - A Theory
of Mobile Processes. Cambridge University Press, 2001.

10

106

[17]

(18]

[19]

[20]

(21]

[22]

23]

[24]

[25]

[26]

[27]

28]

29]

(30]

31]

C. Morgan. Programming from Specifications Ze.

Addison-Wesley, 1994.

R.J.R. Back and J. von Wright. The Refinement Calcu-
lus: A Systematic Introduction. Springer-Verlag, 1998.

A. Moorman Zaremski and J.M. Wing. Specification
Matching of Software Components. In Gail E. Kaiser, ed-
itor, Proc. ACM SIGSOFT Symposium on Foundations
of Software Engineering, pages 6-17. ACM Software En-
gineering Notes 20(4), October 1995.

M. Lumpe, J.-G. Schneider, O. Nierstrasz, and F. Acher-
mann. Towards a Formal Composition Language. In
G.T. Leavens and M. Sitamaran, editors, Proceedings
European Conference on Software Engineering ESEC’97,
pages 178-187. Springer-Verlag, 1997.

M. Lumpe, F. Achermann, and O. Nierstrasz. A Formal
Language for Composition. In G.T. Leavens and M. Sita-
maran, editors, Foundations of Component-Based Sys-
tems. Cambridge University Press, 2000.

D. D’Souza and A.C. Wills. Objects, Components and
Frameworks in UML: the Catalysis approach. Addison-
Wesley, 1998.

M. Biichi and E. Sekerinski. Formal Methods for Compo-
nent Software: The Refinement Calculus Perspective. In
Proceedings 2nd International Workshop on Component-
Oriented Programming WCOP ’97. Turku Center for
Computer Science, General Publication No.5-97, Turku
University, Finland, 1997.

C. Atkinson, J. Bayer, O. Laitenberger, and J. Zettel.
Component-Based Software Engineering: The Ko-
brA Approach. In Proc. International Workshop on
Component-Based Software Engineering, Limerick, Ire-
land. 2000. ICSE (International Conference on Software
Engineering) Workshop.

C. Pahl. Components, Contracts and Connectors for the
Unified Modelling Language. In Proc. Symposium For-
mal Methods Europe 2001, Berlin, Germany. Springer-
Verlag, LNCS-Series, 2001.

H.-E. Eriksson and M. Penker. UML Toolkit. John Wiley
& Sons, 1998.

C. Pahl. Modal Logics for Reasoning about Object-based
Component Composition. In Proc. 4rd Irish Workshop
on Formal Methods, July 2000, Maynooth, Ireland. 2000.

L.M.G. Feijs. The Calculus An. In Algebraic Meth-
ods: Theory, Tools and Applications, pages 307-328.
Springer-Verlag, 1989.

D. Walker. Objects in the m-Calculus. Information and
Computation, 115:253-271, 1995.

M. Lumpe. A w-Calculus Based Approach for Software
Composition. PhD thesis, Universitat Bern, Institut fiir
Informatik und angewandte Mathematik, 1999.

J.-G. Schneider. Components, Scripts, and Glue. PhD
thesis, Universitdt Bern, Institut fiir Informatik und
angewandte Mathematik, 1999.

Gary T Leavens
106

Analysis of Component-Base d Systems — An Automated
Theorem Proving Approach -

Murali Rangarajan
Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418.
mrangara@ htc.honeywell.com

ABSTRACT

As systems become increasingly complex, there is an in-
creasing thrust towards designing systems at the require-
ments level. This approach enables the analysis of various
system properties such as functional correctness, constraint
satisfaction, et cetera at a very early stage in systems devel-
opment, thus enabling faster design of systems with fewer
design flaws. Analyses can be performed at various levels of
rigor. For mission critical systems, analysis using formal
techniques is highly preferable as it provides the highest
level of rigor. But the problem with using formal analy-
sis techniques is that they are either intractable for large
designs, or require highly specialized knowledge possessed
by a few select people. This prevents the majority of the
design population from using such formal analyses in their
design process. In this paper, we describe our approach for
analysis of component-based systems for functional correct-
ness using theorem proving techniques. The components
and the design are specified using the VSPEC specification
language. The model is translated into an equivalent model
in the PVS specification language, and various correctness
properties are automatically extracted from the model and
their proofs are proofs are automatically attempted using
specialized, dynamically generated, proof macros. Results
of applying our technique to various modeling problems are
provided, and the results are discussed.

1. INTRODUCTION

Hardware and software systems are becoming increasingly
complex. Hardware systems consisting of millions of transis-
tors and software systems requiring hundreds of thousands
of lines of code are now commonplace. Along with the com-
plexity of systems, methodologies have evolved to handle the

*Support for this work was provided in part by the CEENSS
Technology Program, contract number F33615-93-C-4304,
and the RASSP Technology Program, contract number
F33615-93-C-1316.

107

Perry Alexander

EECS Dept., Info. and Telecomm. Tech. Center,

The University of Kansas

2291 Irving Hill Rd, Lawrence, KS 66044-7321.

alex@ittc.ukans.edu

complexity. While these methodologies provide ease of de-
sign, even for large systems, they do not have sufficient inte-
grated support for analyzing correctness of designs. For ex-
ample, top-down and bottom-up hierarchical design strate-
gies are widely used to help design large systems. These
by themselves do not ensure correctness of design. What is
needed is some mechanism for analyzing functional correct-
ness of systems during the design process.

In recent times, a number of new techniques and methodolo-
gies have been proposed to handle systems design complex-
ity. These involve specifying requirements in a Requirements
Specification Language and analyzing specifications to ar-
rive at the correctness of designs. A number of semi-formal
and formal analyses have been proposed. Semi-formal meth-
ods and formal methods employing techniques such as model-
checking are easy to apply since a high degree of automation
can be achieved using these techniques. But semi-formal
methods do not provide the requisite rigor to be applicable
for safety/mission critical systems. Model-checking based
analyses are restricted by the problem of state-space explo-
sion (even after the use of state-folding), especially at the
high levels of abstraction frequently encountered at the de-
sign phases. Moreover, compositional analysis using model-
checking is not straightforward. Formal methods employ-
ing theorem proving have a wide range of applicability and
can provide the mathematical rigor required for analyzing
safety /mission critical systems. But they are difficult to ap-
ply as they require in-depth knowledge of formal notations
and theorem proving techniques.

Application of theorem proving for analyzing designs could,
according to the Formal Methods community, have a great
impact in the industry. However, modern designs are large
and complex, and formal analysis of such designs directly
is not practical. Therefore, a simplified model is analyzed
for correctness, from which the correctness of the original
model is assumed. But this need not be always true. Theo-
rem proving has the capability to directly analyze large and
complex designs. Such direct analysis provides more accu-
rate information about the correctness of designs. Thereby,
use of theorem proving techniques can lead to better designs.

Theorem proving is not currently practical for a number of
reasons. The first problem is identifying what needs to be
proved. This is a deceivingly complex task. The second
problem is that of specifying what needs to be proved in

Gary T Leavens
107

some theorem proving language. The complex and mathe-
matical nature of such languages makes this a daunting task
for most designers. The third problem is that of modeling
the domain in the same specification language as that of the
theorems. The final problem is that of proving the theorems
once they have been specified in the language of a theorem
prover. The proof process varies wildly with the theorem
being proved, the design being verified, and the underlying
models on which the theorem is based.

The purpose of this work is to devise a mechanism for au-
tomated analysis of component-based designs for common
classes of errors. We use the VSPEC specification language
to demonstrate our approach. From VSPEC specifications,
equivalent PVS theories are automatically generated. The
generated theories contain verification obligations (as theo-
rems) for interfaces and interconnections. Automated proof
assistance is provided for the verification activities. This ap-
proach was applied to a variety of example problems. The
results (presented in section 4) showed that it is possible to
generate PVS models corresponding to VSPEC specifica-
tions, and that properties about interfaces and interconnec-
tions can be generated as theorems. They also showed that
it is possible to automatically generate proof scripts for cer-
tain categories of models such that the generated theorems
can be automatically proved by the PVS theorem prover.

Since the goal was to automate the proof process, a number
of simplification strategies were adopted. First, the seman-
tics of VSPEC was kept simple by removing all unnecessary
extensions, while at the same time, ensuring the validity of
the resulting semantics. Next, the properties to be analyzed
were generated from at-most two levels in the design hierar-
chy of the system. This results in much simpler properties
to prove than if we were to consider the design as a whole.
Recursive application of this technique to all the levels in the
design provides information about the overall correctness of
the design. Finally, the proofs themselves are generated as
sequences of LISP commands, the same format used by PVS.
This enables the proofs steps to be executed automatically
to check whether a certain property is applicable to a design.
It is to be noted here that the proof macros only increase
the possibility of a proof being completed, but they do not
guarantee it. Whether the proof is actually completed or not
depends upon a number of factors such as the complexity
of the design, complexity of the specifications, the property
being analyzed, etc.

2. VSPEC

VSPEC is arequirements specification language for VHDL.
VSPEC was originally designed as a Larch Interface Lan-
guage for VHDL. Therefore, VSPEC borrows a number of
features from VHDL. The VHDL entities, architectures, and
packages are directly used by VSPEC. The information pro-
vided by VSPEC is specified in a specification construct.
VSPEC specifications are similar to VHDIL architec-
tures in that they provide additional information about an
existing entity. VSPEC’s declarative specification style com-
plements the traditional VHDL operational style. Together,
VSPEC and VHDL support modeling from requirements
acquisition through verification and synthesis.

As a working example, a VSPEC description of a sorting

108

component is shown in Figure 1. The entity sort is identical
to the VHDL entity construct. This provides the interface
for the VSPEC specifications. The package construct is also
similar to that of VHDL, with the exception of the keyword
mutable. This type specifier has been added in VSPEC to
enable the designer to specify complex types without giving
any particular implementation.

The module sort_spec constitutes a VSPEC specification
of the sort entity. The sensitive to clause is similar to
sensitivity lists and the wait statement in VHDL — it defines
when the component is active. It is basically a boolean pred-
icate indicating when an entity should begin executing. The
functional requirements are defined using the requires (pre-
condition) and ensures (post-condition) clauses. These two
clauses define component function as a relationship between
current and next state axiomatically. Any implementation
that makes the post-condition true in the next state, given
that the pre-condition is true in the current state, is a valid
implementation of these requirements. The includes clause
is used to include PVS definitions in a VSPEC description.
The sorts and operators defined in the PVS theories named
by the includes clause can be used in the VSPEC defini-
tion. In the example specification from Figure 1, the sort
component operates correctly in any initial state whenever
its input changes and produce an output that is ordered and
is a permutation of the input. Note that event is a prede-
fined VSPEC predicate that is true whenever its associated
signal changes values in the previous state change.

In addition to allowing the designer to describe functional
requirements, VSPEC also allows the designer to specify
performance constraints using the constrained by clause.
This clause defines relations over constraint variables such
as power consumption, layout area (expressed as a bounding
box), heat dissipation, clock speed and pin-to-pin timing.
Constraint theories are written in PDL [4], and verified using
the associated evaluation tool. Users may define their own
constraints and theories if desired [3].

The functional semantics are modeled upon the semantics of
VHDL under simulation. Therefore, each entity behaves as
an independent process, interacting with the outside world
using messages sent and received through its ports. Each
entity is modeled as a CSP [2] process, and architectures are
modeled using CSP’s parallel composition operator. Com-
ponent interaction is specified in terms of events. Events are
instantaneous actions that represent some real-world occur-
rence of interest. The set of events considered relevant for
a particular description of an object is called the object’s
alphabet. A process represents the behavior pattern of an
object described in terms of events from the object’s alpha-
bet. A sequence of events that a process participates in is
called a frace of that process. A process is fully defined by
its alphabet and the set of all possible traces of that process.

The semantics for VSPEC is given in the PVS specification
language [1]. This includes definitions for all the operators
and types used in VSPEC, and the meanings for the various
VSPEC clauses. This formal definition of all the aspects of
the language in PVS enables the formal analysis of models,
as detailed in the next section.

Gary T Leavens
108

package sort_pkg is
type integer_array is mutable;
end sort_pkg;

use sort_pkg;
entity sort is
port (input: in integer_array;
output: out integer_array);
end sort;

use sort_pkg;
specification sort_spec of sort is
includes SortPredicates;
sensitive to input’event;
requires true;
ensures
permutation(output’post, input)
and inorder (output’post);
constrained by
power <= 5mW and size <= 3um * 5um
and heat <= 10mW and clock <= 50MHz
and input<->output <= 5 ms;
end sort_spec;

Figure 1: VSPEC description of a sorting compo-
nent.

3. TRANSLATION

An example VSPEC file is shown in figure 2, and its cor-
responding generated-PVS file is shown in figures 3 and 4.
The generation process is purely syntactic and is completely
automated by the VSPEC parser. The heart of the trans-
formation to PVS involves: (i) transforming ports and state
variables into Store representation; and (ii) manipulating
the requires, ensures and sensitive to clauses. The gen-
eral structure of all generated PVS theories are similar, with
the basic differences being in the parameters to the theories,
and in the right hand sides of the various axioms.

entity m3 is
port (inil

out1l
end m3;

in integer; inoutl :
: out integer);

inout integer;

specification m3_spec of m3 is
begin
state statel : integer;
sensitive to inl’event;
modifies inouti;
requires inl > inoutl;
ensures outl’post = statel and
inl = inoutl’post;

end m3_spec;

Figure 2: Example VSPEC file

The state of any VSPEC system is defined using a Store.
The store is a simple abstraction of the record structure
containing all the ports and state variables. Each theory
representing a specification must have access to the type
Store. Multiple definitions of a type in PVS results in each
definition being a different type, thereby making proofs over

109

stores impossible. To get around this problem, the Store
type and the constant empty are passed as parameters to
all the entity theories as their first two parameters. For
the same reason, the type Component is also passed as a
parameter. Since there always is a 'root’ theory from which
the analysis starts, this process ensures that only one Store
and Component are visible throughout the system.

If the original VSPEC file had imported any PVS theories,
they would be imported at this point. The reason for im-
porting theories at this point is that types defined in those
theories may be needed for the remaining parameters to the
theory. The locations of the included theories are specified
by the corresponding LIBRARY declarations. In our example,
since there are no included theories, no importing state-
ments are generated here. The remaining parameters are
the declarations of the port variables. They are declared as
functions from a Store to their corresponding type.

The body of the theory starts by declaring a constant comp
that represents the current component. All the properties
of components are defined over their respective comps. This
enables the linkage of various properties to specific compo-
nents. Next, the OneComponent and the TypeSpecificInfo
theories are included. The OneComponent theory specifies all
aspects of the process (associated with the VSPEC entity)
independently from any VSPEC component. Theories rep-
resenting specific components specialize OneComponent. The
advantage of this approach is that verification of OneCompo-
nent need only be performed once. The basic theorems need
not be reproven each time. The theory TypeSpecificInfo
defines some operators that are common to all types. This
theory is included once for each data type used in the sys-
tem.

The state variables are all declared in a manner analogous
to the port variables. They are declared as constant func-
tions from a Store to their corresponding types. Next, some
generic variables used in the axioms and theorems are de-
clared.

The sensitive to, requires and ensures clauses are each
transformed into axioms over stores. The sensitive to
clause is defined by the axiom sensitive_ax, the requires
clause by the axiom requires_ax over the pre state, and
the ensures clause by the axiom ensures_ax over the states
pre and post. The transformation of these clauses involves
two basic activities: (i) combining the various occurrences
of each clause into one; and (ii) replacing variable references
with functions over Store.

The modifies event_ax axiom and the input_event_ax ax-
ioms are part of the semantics of component activation and
define when the functions modSet_event and input_event
are true. The former is true when there is an event on one
of the modifies variables (including the OUT and STATE

variables). The latter is true when there is an event on an

IN or INOUT variable.

For the component to ever become active, its initial state
must be a part of the set of active states of the process. This
fact is ensured by the first theorem (initstates_th) in the
generated theory. Since, currently, there is no mechanism

Gary T Leavens
109

%% PVS representation of specification m3_spec of entity m3

m3_spec [Store: TYPE+, empty: Store, Component: TYPE+,

inl : [Store -> integer], inoutl : [Store -> integer],
outl : [Store -> integer]] : THEORY
BEGIN

% The component corresponding to this entity
comp: Component

IMPORTING jvsp@OneComponent[Store, empty, Component, comp]

%% The state variables in this entity
statel : [Store -> integerl]

%% Variables used in theorems and axioms
pre, post, any: VAR Store

%% Part of definition for semantics for event
modifies_event_ax :
(event(outl, any) OR event(inoutl, any))

%% Requires Clause defines I
requires_ax : AXIOM I(comp) (pre) = (

% Ensures clause defines 0
ensures_ax : AXIOM O(comp) (pre,post) =

AXTOM modSet_event (comp) (any) =

inl(pre) > inoutl(pre))

(outl (post) = statel(pre) AND inl(pre) = inoutl (post))

% Sensitive to clause
sensitive_ax :

AXTOM member (pre,Psi(comp)) = (event(inl, pre))

Figure 3: Partial PVS translation of specification m3_spec, part 1 — Variables and axioms

to specify the initial values of the various port and state
variables, the axiom initstates_ax asserts that the initial
state 1s equal to Psi. This automatically ensures us that
InitStatesis a subset of Psi.

The remaining theorems represent the single-component pro-
of obligations. The completeness proof obligation is gener-
ated as the theorem complete_th, the witness for incom-
pleteness obligation as theorem incomplete_th and the in-
consistency obligation as the theorem inconsist_th. This
completes the generated PVS theory for the specification
m3_spec.

Abstract architectures are defined by: (i) specifying commu-
nication paths between components; and (ii) defining activa-
tion conditions to indicate when components should process
inputs. The state of an architecture is defined to be the
union of its components states. Component communication
is achieved when their states share objects. Activation is the
VSPEC dual of VHDL’s sensitivity lists and indicate when
a component should process its input. Together, commu-
nication and activation define the semantics of architecture
specifications.

The VSPEC architecture for the find component is shown
in figure 5. The VSPEC architecture is identical to the
VHDIL architecture, except for the use of the key word
VSPEC to denote VSPEC specifications rather than VHDL
components during instantiation. The variables in the sig-
nal declaration represent internal connections between the
components in the architecture. Following the signal dec-

110

larations, the components in the architecture are instanti-
ated with appropriate parameters. The parameters repre-
sent connections with other components, or with the inter-
faces of the architecture, based on the name of the param-
eter. This concludes an architecture description. In our
example, the find_arch architecture has two components
— the sorter component, which is an instance of the sort
component, and the searcher component, which is an in-
stance of the bin_search component.

The PVS representation for this architecture (Figures 6, 7)
has, as usual, the parameters Store, empty and Component.
This enables the architecture to be imported in other archi-
tectures. Following this, the theory Architecture is im-
ported to provide semantics to the various architecture op-
erators. The ports of the higher-level component (find, in
our example) are then declared. These form the ports of
the architecture too, and provide inputs to and obtain out-
puts from the components in the architecture. The signals,
which provide connections between the components in the
architecture, are declared next.

The specifications of the higher-level component and the
components in the architecture are imported with appro-
priate (depending upon how the component is connected)
instantiations. The sole axiom of the theory (theorem arch
_comps_Axiom in our example) defines the set arch_comps to
be composed of the comps of all the components in the ar-
chitecture. This declaration is essential for the definition of
the architecture process, the process representing the paral-
lel composition of these components.

Gary T Leavens
110

%% Possible initial value in all traces of entity_process.

initstates_ax: AXIOM InitStates(comp) = Psi(comp)

%% Value of outputs and state variables does not change between post &
%% any. Initstates must be a subset of Psi for the model to be valid!
initstates_th: THEOREM subset?(InitStates(comp), Psi(comp))

%% Completeness obligation

complete_th: THEOREM (member (pre, LegalStates(comp)) AND

menber (pre, Psi(comp))) => I(comp) (pre)

%% Witness for incompleteness

incomplete_th: THEOREM EXISTS (x: Store): (member(x,LegalStates(comp))

AND member(x, Psi(comp))) => NOT I(comp) (x)

%% Inconsistency obligation

inconsistent_th: THEOREM (member (pre, LegalStates(comp)) AND

menber (pre, Psi(comp))) => NOT I(comp) (pre)
END m3_spec

%% End of PVS representation of entity

Figure 4: PVS translation of specification m3_spec, part 2 — Theorems

architecture find_arch of find is

signal sig_outl, sig_out2, sig_out3, sig_out4: integer;

begin
sorter: VSPEC entity sort

port map (inl, in2, in3, in4, sig_outl, sig_out2, sig_out3,

sig_out4);
searcher: VSPEC entity bin_search

port map (sig_outl, sig_out2, sig_out3, sig_out4, key,

output) ;
end architecture find_arch;

Figure 5: VSPEC specification of find component’s architecture

The generated theorems represent the various proof obliga-
tions for architectures. The input consistency proof obliga-
tion is generated as the input_interface_th theorem, the
output consistency proof obligation as the output_inter-
face_th theorem, strong liveness proof obligation for sort
component as the strong live_sort_thl theorem, and weak
liveness and inconsistency proof obligations of the bin_search
component as the theorems weak_live bin_search_th2 and
inconsist bin _search_ th3. The numbers at the end of
theorem names are used to disambiguate between the same
proof obligations of the same component used multiple times
in the architecture. The sort component does not have the-
orems corresponding to the weak liveness and inconsistency
proof obligations as there are no other components providing
inputs to it. All its inputs are obtained from the interface of
the architecture. Similarly, the bin_search component does
not have a strong liveness theorem as all its outputs are part
of the architecture interface.

4. PROOF AUTOMATION MECHANISM

Automation is critical for the success of any new methodol-
ogy, and application of theorem proving is not an exception.
But automation of theorem proving, in the general case, is

111

not possible. Our approach has been to generate proof steps
that have a high probability of successful completion. This
approach is facilitated by the fact that both the generated
theorems, and the semantics required for their proofs, have
been written by us. This enables us to fine-tune the proof
steps for individual theorems.

The proof steps generated for individual theorems are de-
pendent upon the terms in the theorem. The general ap-
proach is to LEMMA the relevant axioms and theorems, in-
stantiate them with appropriate constants, perform appro-
priate replacements of terms, and finally, to use PVS’s built-
in macro GRIND to attempt completion of the proof. Power-
ful prover commands provided by PVS are used in order to
generalize the generated proof. For example, the (INST?)
command provided by PVS attempts to automatically in-
stantiate universally quantified variables in the antecedent
with appropriate skolem variables.

The proof process starts by using the VSPEC parser to
parse a component specification or architecture. The parser’s
--pvs flag generates the PVS equivalent of the parsed mod-
ule. While generating theorems for the PVS module, the

Gary T Leavens
111

input_interface_th: THEOREM member (pre,

Psi(find_spec[Store, empty, Component, inl, in2, in3, in4,

key, output].comp)) =>

(member (pre, Psi(sort_spec[Store, empty, Component, inl, in2, in3,
in4, sig_outl, sig_out2, sig_out3, sig_out4].comp))

or member (pre, Psi(bin_search_spec[Store, empty, Component,
sig_outl, sig_out2, sig_out3, sig_out4, key, output].comp)))

strong_live_sort_thl: THEOREM

O(sort_spec[Store, empty, Component, inl, in2, in3, in4, sig_outl,

sig_out2, sig_out3, sig_out4].comp) (pre,post)

=> (member(post, Psi(bin_search_spec[Store, empty, Component,
sig_outl, sig_out2, sig_out3, sig_out4, key, output].comp)))

weak_live_bin_search_th2: THEOREM

(member (pre, Psi(sort_spec[Store, empty, Component, inl, in2, in3,
in4, sig_outl, sig_out2, sig_out3, sig_out4].comp))

and O(sort_spec[Store, empty, Component, inl, in2, in3, in4,
sig_outl, sig_out2, sig_out3, sig_out4].comp) (pre, post))

=> member (post, Psi(bin_search_spec[Store, empty, Component,
sig_outl, sig_out2, sig_out3, sig_out4, key, output].comp))

END find_arch
% End of PVS representation of architecture.

Figure 7: Partial PVS representation of find architecture, part 2

corresponding proof scripts and LISP files for use with the
PVS proof checker are also simultaneously generated. After
completion of the parsing, the PVS proof checker is invoked
in the batch mode. Since PVS uses a LISP interface, a
LISP file, containing a sequence of commands for execution

by PVS, can be passed to PVS in the batch mode.

The loader file is generated by the parser, and has a se-
quence of commands for execution by the PVS proof checker.
The load commands loads a file called prfobs_fns.lisp,
which defines two main LISP functions — mytc and myprove.
The mytc function instructs PVS to typecheck a file. The
myprove function first installs the generated proof script,
then uses it to prove a specification. The results are stored
in a file called proof _status, which is printed out at the end
of the proof process.

5. RESULTSAND EVALUATION

In this section, we present the results of analyzing model
systems using our approach. The main aim of perform-
ing this evaluation was to identify the factors that affect
the automatability of proofs. Towards this end, the exam-
ple systems incorporate a wide variety of situations. They
include control-based and data-based activation of compo-
nents; linear, branching and feed-back architectures; and
systems with intentional bugs that result in incompleteness
(necessitating proofs over existential quantifiers).

The automated theorem-proving analysis has been applied
to a number of systems. The find system has been de-
scribed throughout this dissertation. It was chosen for illus-
tration as it is a conceptually simple example that demon-
strates most of the features of our approach. Apart from the

112

find example, the AlarmClock system (a synthesis bench-
mark developed by Synopsis), the PIP system (a Digital Sig-
nal Processing System developed by our sponsors), and the
CruiseControl system (a standard modeling problem) were
also analyzed.

The results of our analyses are presented in table 1. The
first column of the table lists the various modules that were
analyzed. The second column indicates whether a module
is a single component or an architecture. The third column
lists the number of theorems that were automatically proved.
The fourth column lists the number of theorems with pos-
stble proofs in that module. This is critical for statistical
analysis of the effectiveness of our approach. A theorem has
a possible proof if it is not preempted by some other the-
orem. For example, successful proof to the Completeness
proof obligation automatically implies that the Incomplete-
ness and Inconsistency proof obligations cannot be proved.
At the same time, successful proof of the Incompleteness
proof obligation invalidates the Completeness proof obliga-
tion, but does not necessarily mean that the Inconsistency
proof obligation should hold. It may or may not, depending
on the model. Such cases are handled by the eighth column,
where we list the number of (invalidated) theorems that are
not provable (even by hand) in a given model. We are mainly
interested in seeing how many of the provable (that is, pos-
sible minus invalidated) theorems are automatically proved.
The fifth through seventh columns list the various causes
(activation style employed, specification style employed, or
presence of existential quantifiers) for why certain provable
theorems could not be proved automatically. The specifica-
tion style column also includes cases in which the problems
are caused by deficiencies in the source specification lan-
guage. The final column lists genuine bugs identified by the

Gary T Leavens
112

Module Comp/ | Auto- | Pos- | Act. | Spec. | Exist. Not Bug
Name Arch mated | sible | Style | Style | Quant. | Prov.
find Comp 2 2

sort Comp 2 2

bin__search Comp 1 2 1

find__arch Arch 3 4 1

AC Comp 2 2

comparator Comp 2 2

counter Comp 2 2

mux Comp 2 2

AC__arch Arch 1 5 4

PIP Comp 2 2

PulseDetector Comp 1 3 1 1
InterrogatorDecoder | Comp 1 2 1

PulseGenerator Comp 1 2 1

PIP__arch Arch 2 6 4

CruiseControl Comp 2 2

SystemState Comp 2 2

CDS Comp 2 2

CTS Comp 2 2

CruiseControl_arch Arch 4 6 1 1

Table 1: Results of applying automated proof obligations to various systems

%% PVS representation of architecture find_arch of
%% entity find
find_arch [Store: TYPE+, empty: Store,
Component: TYPE+] : THEORY
BEGIN

IMPORTING jvsp@Architecture[Store, empty, Component]

%% Ports of
inl: [Store
in2: [Store
in3: [Store
in4: [Store -> integer]

key: [Store -> integer]

output: [Store -> integer]

the Higher Level Component
-> integer]
-> integer]
-> integer]

=>
=>
=>
=>

[Store
[Store
[Store
[Store

sig_outl:
sig_out2:
sig_out3:
sig_out4:

integer]
integer]
integer]
integer]

%% Variables used in theorems and axioms
pre, post, any: VAR Store

Figure 6: Partial PVS representation of find archi-
tecture, part 1

system.

There are four main factors that affect the provability of
generated theorems. The most significant of these factors is
the structure of the architecture. Linear architectures are
the easiest to perform automated analysis. Branching ar-
chitectures increase the complexity of generated theorems
and require additional proof steps, such as proof by cases,
in some cases. The most complicating structure is feedback,
which has its greatest impact on bisimulation proofs. Sys-
tems with feedback require induction proofs, which, in the
general case, cannot be automated. Therefore, systems with
feedback cannot be automatically analyzed. A special case

113

of systems with feedback is the use of local store by com-
ponents. For all practical purposes, a system with a local
store is similar to that same system generating outputs to a
component that feeds the same values back to the original
component during the next activation period. Therefore,
systems with local store cannot be automatically analyzed.

The activation style employed plays a crucial role in the
provability of the proofs. When using control-based acti-
vation, it becomes necessary to do an inductive proof over
all traces of the system in order to identify the states in
which a component can be activated. The validity of the pre-
condition is checked in all such active states. On the other
hand, when using data-based activation, the pre-condition
can be verified directly from the activation condition, and
so is automatable.

The third factor that affects the complexity of proofs is the
specification style employed by the user to specify the user-
defined operators in PVS. Specifications using conservative
extension are more amenable to automated proofs as the
prover can automatically expand relevant terms, whereas
other specification styles require explicit introduction of rel-
evant axioms into the proof process.

The final factor is the presence of existential quantifiers in
the theorem proved. At present, there is no automated
mechanism to provide correct instantiations to existential
quantifiers. Therefore, while the semantics allow such proofs
to be manually performed, they cannot be automated. How-
ever, one of the new engines being implemented for the PVS
theorem prover is aimed at rectifying this deficiency. This
engine, once fully implemented, is expected to find suit-
able instantiations (in most cases) if they exist. This engine
would allow automated proofs to many more proof obliga-
tions than currently possible.

6. SUMMARY AND CONCLUSIONS

In this work, we presented an approach to using theorem
proving for automatic analysis of abstract, component-based,

Gary T Leavens
113

designs. It involved the use of two different languages, one
that is easy for the designers to write specifications in, and
another in which it is easy to prove theorems. For abstract
designs, the VSPEC specification language was used, while
the PVS theorem prover was used for proving properties
about the design.

The two-language approach necessitated the writing of the
semantics of the specification language in the theorem prov-
ing language and translating specifications into that seman-
tics. A number of interesting properties generic to component-
based hardware-like systems were identified. These analyze
the interfaces and interconnections of an architecture with
respect to a specification. Since interfaces and interconnec-
tions were identified as the sources of most errors in systems
design and implementation, these were expected to have the
most impact. Translation is a straightforward process, with
one PVS theory being generated for each VSPEC entity.
The various clauses are generated as axioms within the the-
ory. The proof obligations for the analysis of interfaces and
interconnections within the model are generated as theorems
within the theory.

The final part of our approach involved the generation of
proof steps to attempt automated proofs to the generated
theorems. The proof steps were generated simultaneously
with the generation of theorems. The proof steps make use
of powerful proof macros provided by the PVS proof checker
so as to make the proofs generic.

Our methodology was evaluated with the goal of identifying
the conditions under which it is or is not effective. Four mod-
els were analyzed using our approach — the Find model, the
AlarmClock model, the PIP model and the CruiseControl
model. Most of the provable theorems were shown to be
automatically proved using the generated proof scripts. A
number of factors affecting the automatability of the proofs
were also identified. These include structure of the archi-
tecture, activation style, specification style and presence of
existential quantifiers.

In conclusion, our approach to the problem is promising.
The use of theorem proving facilitates appropriate handling
of abstraction during the early design stages, while the au-
tomation makes this approach easily applicable. Our use of
design abstraction and small theorems makes our approach
tractable.

7. REFERENCES

[1] Judy Crow, John Rushby, Natarajan Shankar, and
Mandayan Srivas. A Tutorial Introduction to PVS. SRI
International, Menlo Park, CA, June 1995. Presented
at WIFT’95.

[2] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666-77, 1978.

[3] Amitvikram Rajkhowa. Vspec constraints modeling,
evaluation and verification. Master’s thesis, University
of Cincinnati, 1999.

[4] Ranga Vemuri, Ram Mandayam, and Vijay Meduri.
Performance modeling using PDL. Computer,
29(4):44-53, April 1996.

114

Gary T Leavens
114

A Component Oriented Notation for Behavioral
Specification and Validation

Isabelle Ryl and Mireille Clerbout and Arnaud Bailly
L.ILFL. CNRS UPRESA 8022
Bat M3, Cité Scientifique
59655 Villeneuve d’Ascq cedex
France

{ryl, clerbout, bailly}@lifl.fr

ABSTRACT

Component software development is definitely on a high
trend in the sofware engineering field. However, integrat-
ing components which the producer does not have complete
control over increases the risk of getting unexpected software
behavior. So developing components for reuse by third-party
integrators is a challenging task that one can make easier if
the behavior of these software components is precisely spec-
ified.

In this paper, we introduce a specification language com-
plementing the interface definition language IDL3 proposed
by OMG to describe CORBA Component Model compliant
components. This specification language is based on com-
munication history : the sequence of observable events -
method calls, return of method calls, events, exceptions —
that occurred since the system has been started. It allows
us to characterize the functional behavior of components by
way of invariants : an interface invariant specifies a contract
between a component that provides it and each of its clients,
whereas a component invariant constraints the whole com-
munication between one component and all its clients and
servers. We propose a procedure based on this notation
for generating specification-based test cases adapted to unit
testing and discuss how to use this notation for validation
purposes.

1. INTRODUCTION

The development of component based applications is clearly
a necessity for software industry in a world of large scale
distributed applications. Furthermore, the growth of a mar-
ket of reusable components, the famous Components off-the-
shelf — COTS — seems to be the only way to reduce produc-
tion costs in a domain where constantly evolving technol-
ogy checks productivity. Nevertheless, this approach makes
sense if components are high-quality and really ”compos-

115

able”. This can be achieved by strict development methods
and interoperability norms. This last point is addressed by
platforms like CORBA, EJB or DCOM.

The well-known advantages of a ”component oriented” ap-
proach are the following :

o reusability. Components are ”bricks” that are available
for designers,

o maintainability . Functionalities can be added or modi-
fied just by insulating responsible components,

e interoperabilty. Components implementing a given spec-
ification can be searched amongst existing components
offered by various providers on the COTS’ market.

To reach these goals, the specification of components has to
be precise enough to allow searching, testing and composing
components which are potentially designed, implemented,
integrated, and used by different people. The mere exis-
tence of a market itself depends on the confidence providers
and consumers may put in the functional correctness of a
product.

In ”Component Software” [22], Clemens Szypersky proposes
the following definition of components: ” A Software compo-
nent is a unit of composition with contractually specified in-
terfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to
composition by third parties.” This definition emphasizes
the use of well specified interfaces to describe components
because the interfaces have to be the only link between a
component and its outer-world i.e. its clients and environ-
ment.

One way to correctly specify interfaces is to use specific in-
terface description languages, like the OMG-IDL for CORBA
objects and the new OMG-IDL3 for CORBA Component
Model compliant components. IDL typically defines con-
tracts between components using method signatures. Un-
fortunately IDL contracts are mostly syntactic and do not
capture the semantic aspects of the contract. This leads to
under-specified components and breaks the initial interop-
erability goal. As an example, we can mention the work
of Ousmane Sy [21] who showed that five different imple-
mentations of the COS event service by CORBA framework

Gary T Leavens
115

providers were neither inter-operable nor substitutable be-
cause of diverging interpretations of the OMG-IDL specifi-
cation.

During the last few years, the interest in formal software
development has grown steadily. Approaches based on for-
mal methods provide the advantages of a precise and non-
ambiguous specification language with a formal semantic.
And, even if formal proofs are out of their scope, formal
verification is possible and generally supported by tools.

Sofware quality should benefit from formal method based
component development a various stages:

1. a formal specification language has to be rich enough to
express the full semantics of components,

2. powerful tools have to be able to check the consistency of
specifications, using for example type-checking. Higher
level properties must be verified: it may be possible to
control that a component respect the contracts of its re-
quired environment, to control that the implementation
of a component conforms to its specification and that
connected components are compatible.

To fulfill this requirements, we propose to increase the speci-
fication power of OMG-IDL3 from the OMG CORBA Com-
ponent Model (CCM) with formal specifications. This in-
creased specification will follow the component through its
life-cycle and will serve as lingua franca for all the actors —
designers or users — to describe the behavior of the compo-
nent. We only focus on describing functional aspects and
do not address non-functional requirements like quality of
service or overall reliability.

To us, a component is a black box that offers services, re-
quires a specified environment, and can emit or receive asyn-
chronous events. Interfaces are seen as contracts between
two components or, in a more practical point of view as
communication channels (like the event channels) between
components. A system is then a set of components which
are connected to each other by interfaces and event chan-
nels, and we focus on communications between components.
Our specification language allows us to express two kinds of
property. The first one is the notion of protocol, that is to
say the partial order in which the input and output com-
munications have to occurred. The second one is the data
level, i.e. the possibility to specify properties on the value
of an input or output parameter.

To meet these requirements, we propose a specification lan-
guage based on communication traces.

The basic events of the system we consider are the messages
components exchange, which are supposed to be instanta-
neous and asynchronous:

e method calls between interfaces of components,
e return of method calls,

e exceptions between components,

e event sending,

e event receiving.

116

Note that internal method calls are not considered here.

The trace of a running component, system or sub-system
is the sequence of all the events involving it that occurred
since its creation. The purpose of the specification is to
capture the set of all possible communication traces of a
given system. Note that a lot of works deals with the trace
notion in different contexts (for example CSP [10], trace
theory [8], ...).

After a short introduction to the CCM abstract model and
IDL3, Section 2 describes our specification language. Sec-
tion 3, gives some ideas of validation activities and proposes
a way to test components. After a short review of related
works, we conclude with some possible further work.

2. HOW TO SPECIFY COMPONENTS?

As already said, we build upon the CORBA Component
model. We insisted on the fact that the specification could
increase the reliability of the component at several stages
in its life. Therefore, the specification ought to be present
every time it might be needed and this explains our choice
of IDL3 as our ground language. It offers two advantages:

1. IDL3 already exists, is used by several tools, and is em-
bedded in the component package,

2. the IDL3 language contains all the necessary syntactic
definitions of components and interfaces that can be ex-
ploited for formal specification purposes.

In order to respect the IDL3 syntax, we just insert some
formal properties of components as IDL3 comments. That
way, the specification is embedded in the packaged compo-
nent and do not interfere with existing tools. To enlighten
our methodology, we will develop in the remainder of this
article a small example: an electronic ballot system.

Example informal specification. FEach voter uses an
electronic individual polling device that communicates with
a central office which registers the votes. To simplify the
writing, we just consider a referendum and some rules:

e voters are allowed to vote at most once,

e voters are allowed to read the results when the ballot is
over,

e the central accepts votes until the closure, then rejects
them,

e the central refuses to provide partial results before the
closure,

o the central must announce the correct results !!!

The first subsection presents the general CCM model, the
second one briefly introduces the IDL3 syntax. The last one
presents our formalism on the example.

2.1 Model

To formally specify software components, we first have to
agree on the definition of a component. We try in this sub-
section to present the abstract model we use that is part of
the CCM model. We are just a little bit more restrictive

Gary T Leavens
116

than the CCM ; CCM components may support interfaces
and components may communicate with other components
outside the scope of interfaces: this is not allowed in our
model where all the components must declare ports (inter-
faces) and communicate through these ports only.

Interfaces are used by developers as implementation con-
tracts for components and by clients to interact with com-
ponents at runtime. Interface definition contains attributes
and method signatures and may be defined using multiple
inheritance. An interface groups a — hopefully coherent —
set of methods providing some services and, according to
the connection mechanism of the CCM model, it becomes a
communication channel for data exchange between compo-
nents.

A component definition groups attributes and ports. At-
tributes are properties of components set at deployment
time for configuration purpose. Attributes misuse may raise
exceptions. Ports come in four flavors:

e facets are interfaces provided by the component and syn-
chronously used by the clients,

e receptacles are interfaces used by the component in a
synchronous mode,

e event sinks are interfaces provided by the component
and asynchronously used by the clients,

e cvent sources are interfaces used by the component in an
asynchronous mode.

Ports are used at deployment time and runtime to connect
components together. According to this model, a compo-
nent may be seen as an element of a system that offers a
collection of services under the assumption that another col-
lection of services is available. This approach makes compo-
nent exchange easier. Note that components may be defined
using single inheritance (in a Java style). Figure 1 shows the
diagram (drawn from [15]) used to represent a component
and its ports.

O . . C
Facets : : Receptacles
O Component C
Event C . : i Event
Sink : : Source
S <

Figure 1: Component.

A system is a set of components. The current set of con-
nections between components represents the system’s con-
figuration. Figure 2 presents our proposed model for the
electronic vote example. Two types' of components are
used, one for the votes collecting central office, Center, and
one for the individual polling devices, Electronic_box. An
Electronic_box component is used by each voter, it offers

L For lack of space, we do not address the problem of identification of
voters which can be solved using a classical ”login/password” proto-
col.

117

an interface Electronic_vote that allows the voter to send his
vote or get the results. Electronic_box components are
distributed and connected to the Vote_Center interface of
a Center component that centralizes information. Cen-
ter’s main role is to count votes, it also offers an interface
Vote_Admin used to close the ballot. When the ballot is
closed, the Center sends an event to inform connected com-
ponents of the closure and transmits them results. The event
sinks of Electronic_box components are connected to the
event source of Center: the events sent via this source will
be received by all connected components.

Electronic_Vote Electronic_box

Closure
Center

Figure 2: The example model.

2.2 IDL3 short presentation

The OMG IDL3 language extends IDL2 with some syntac-
tic constructs to take into account the CORBA Component
abstract model. This section shall introduce IDL3 concepts
relevant to our example and is by no mean a full description
of the CORBA Component Model. We refer the reader to
[15] for more details about the CCM.

A part of the syntax is inherited from IDL2. Declarations
are gathered in modules that delimit a domain name. In-
terfaces declare attributes and methods. Interfaces may be
defined using multiple inheritance. Declarations are in a
C/Java style, methods may have in, out, and inout param-
eters of simple types (Short, Long, Float, Char, String,
Boolean, ...), complex types (Enum, Struct, Array, ...) or
object types. Methods may also throw exceptions which
may be defined by the user.

Figure 3 shows the IDL3 definitions of our example’s inter-
faces. The module Vote starts by defining four exceptions
(an exception may contain fields) followed by interface defi-
nitions. Electronic_Vote is the interface used by the voters,
it offers two methods, one to vote and one to read the re-
sults. The first one has an in-parameter which represents
the value of the vote (true for ”yes” and false for "no”)
and it may throw two exceptions: too_late if somebody
tries to vote after the closure and already_voted if some-
body tries to vote twice. The method read_results has two
out-parameters respectively returning the number of ”yes”
and "no” votes of the ballot. This method may also throw
an exception when used before the closure (the results are
not available). The interfaces Vote_Center and Vote_Admin
are facets of the Center, they are respectively used by the
Electronic_Box components and by an administrator. The
vote method is used to transmit the elector’s vote to the

Gary T Leavens
117

center, it returns a boolean indicating if the vote has been
taken into account or not (in case of closure for example).
The method close allows an administrator to close the bal-
lot and throws an exception if already closed. Comments
are between /** and */ or // and end of line.

module Vote {
exception too_late{};
exception already_voted{};
exception already_closed {};
exception not_closed {};

interface Electronic_Vote {
void vote (in boolean choice)
raises (too_late, already_voted);
void read_results (out long yes,
out long no)
raises (not_closed);

/%%
invariant
(h; _<-this.vote(.) |- H)
=> (! <-this.vote(_) in h)
&&
(h; _<-this.vote<already voted> |- H)
=> (_<-this.vote(.) in h)
&&
((_<-this.vote<too_late> |
<-this.read_results (_,.));h in H) =>
h/<- |- (<-this.vote<too_late> |
_<-this.read_results (_,.)))*
*/

}s

interface Vote_Center {
boolean vote (in boolean choice);
I

interface Vote_Admin {
void close() raises (already_closed);
VAL
invariant
(h; _<-this.close() |- H) =>
(! <-this.close() in h)
*/
}s
...// insert here component declarations

};

Figure 3: Interface Specifications.

Components are introduced by the keyword component. As
already said, components may contain attributes and ports
definitions. Several keywords allow us to distinguish differ-
ent kinds of ports: provides and uses for facets and re-
ceptacles, consumes for event sinks and publishes or emits
respectively for 1-to-n or 1-to-1 event sources.

Figures 4 and 5 complete our example’s definition. Com-
ponent Center has two facets and one I-to-n event source
while component Electronic_box has one facet, one recep-

118

tacle and one event sink. Each producing or consuming
event port specifies a type of event: events are simply val-
uetypes (that is to say objects by value) that inherit from
the Components: :EventBase interface. In our example, a
closure event has two attributes encoding results of the bal-
lot: yes_number for count of ”yes” and no_number for count
of "no”. Thus, an event has a meaning of its own (here
indicating ballot’s closure) but may also carry values (here
results of the vote).

One can notice that all ports of a component are named
and that a component may offer several ports of the same
type. The (de-)connection operations are relevant facts in
the component life, they consist in the assignment of real ref-
erences to receptacles and sources of the component. Con-
nection and deconnection operations are implicit methods
of any component.

2.3 Specificationlanguagepresentation

We have previously expressed our goals, and said that we
use IDL3 as our components’ definition language. It is now
time to describe the formal specification language inserted
as comments. As said earlier, we only focus (at least at this
stage of our work) on the functional aspect of components,
aiming to answer to these questions :

e How to describe a component’s behavior 7

e How to ascertain that two components are interchange-
able i.e they offer the same services?

e How to be sure that several components can be con-
nected?

A system evolves from its creation to its destruction by way
of components interactions. Thus, the ”state” of a system
(or component) may be seen as the result of its past inter-
actions with its environment. So, the specification language
we use is based on the concept of communication ”history”.
This idea comes from an object oriented formal notation
developed at Oslo University: OUN (Oslo University Nota-
tion)[17].

The communication history of a system is a sequence of ob-
servable events (a trace) that records all communications be-
tween components that occurred since the system has been
started. The notion of ”observable” event depends on the
viewpoint we consider:

e observable events of a system are all the communications
between components (method calls, returns of method
calls, events, exceptions),

e observable events of a component are the events of the
system that can be ”seen” from the viewpoint of the
component, that is to say all the communications whose
sender or receiver is the component,

e observable events of an interface of a component are the
communications involving the component through this
interface.

Events of the system are supposed to be instantaneous,
they may fall into four categories:

Gary T Leavens
118

component Center {
provides Vote_Center v;
provides Vote_Admin a;
publishes Closure c;
VAL
invariant

functions
result : Trace, boolean -> int;
result (empty,.) -> 0,

result(h;_, x) -> result(h).
*/

(h; <-a.close() |- H) => (!_<-a.close() in h)
&& (h;_<-a.close<already_closed> |- H) => (<-a.close() in h)
&& (h; _<-v.vote(_:true) |- H) => (!this->c[x,y] in h)
&& (h; _<-v.vote(_:false) |- H) => (this->c[x,y] in h)
&& (h;_<-a.close() |- H) => (hl;this->c[x,y]

result(h;_<-v.vote(x),x) -> result(h,x) +1,

|- h & x=result(hl,true) && y=result(hl,false))

Figure 4: Component Center.

1. ¢ = (¢’ : ©).m(Z) denotes a call of method m with the
tuple of parameter values z initiated by component c, m
is a method of facet i of component ¢’. Events belonging
to this category are termed initiation events,

2. ¢4+ (¢’ : i).m(¥y : z) denotes "normal” return of a previ-
ous event, the parameter values § may be different from z
since out and inout parameter modes are allowed. The
optional : z value denotes possible return value of the
method. Events belonging to this category are termed
termination events,

3. ¢ « (c' : ©).m < e > denotes termination of a method
call by an exception e. Those events are termed excep-
tion events,

4. ¢ = {(c1:51),...,(cn : Sn)}[Z] denotes an asynchronous
message, an event sent by component c to sinks s1, ..., s,
of components ci, .. ., ¢, respectively with tuple of values
Z. Those events are termed asynchronous events.

Note that we do not characterize attributes and (de-)connec-
tion events: we consider attributes as pairs of set/get meth-
ods and (de-)connection events as method calls.

The set of possible events of the system is called the alpha-
bet of the system (it depends on interfaces and compo-
nents comprising the system). We can define in the same
way alphabets for various elements of the system depending
on what they can observe.

The alphabet of a component is the subset of events of
the system whose receiver or sender is this component.

The alphabet of a component seen through an in-
terface is the subset of the component alphabet contain-
ing events that are initiation, termination or exception of
method calls defined in this interface.

119

A trace of a component (resp. a system) is a sequence
of events of this component’s (resp. system) alphabet in
which a termination or exception event responds to a past
initiation event. Notice that asynchronous events have no
corresponding terminations. One may think of a trace as a
sequence of events of a running system registered in the or-
der they appeared since the start of the system until an arbi-
trary observation instant. Clearly, the system may run after
the observation — a trace does not represent complete exe-
cution — and observation may occur at any time — a trace’s
prefix is also a trace.

A system element’s specification describes its behavior in
terms of possible communication traces. A component’s
specification is expressed as an invariant on traces (in first
order logic). This invariant characterizes a subset of all pos-
sible traces over the component’s alphabet hence capturing
this component’s semantic.

An invariant may be added to each interface or compo-
nent. Informally, it is a first order formula with variables,
constants, functions, predicates and constraints whose mod-
els are the valid traces of the component.

Our purpose is to convince the reader of expressiveness of
such a notation and not to detail the syntactic sugar it offers,
so we give an idea of the notation on the example.

Interface invariants in our example are shown in Figure
3. In our model, interface invariants are seen as 1-to-1 con-
tracts, so they specify communications between a compo-
nent implementing the interface, represented by the key-
word this, and one of its clients, represented by the symbol
_which denotes any value in the corresponding domain (here
the set of components). This does not inhibit one-to-many
communication schemes: a component may receive method
calls from different clients through one of its interfaces but

Gary T Leavens
119

component Electronic_Box{
provides Electronic_Vote e;
uses Vote_center v;
consumes Closure c;
VAL
invariant

*/

(h; <-e.vote(x) |- H) => (this->v.vote(x);this<-v.vote(x:true) -| h)
&% (h;_<-e.vote<too_late> |- H) => (_->c[_,_] in h)
&& (h; _<-e.read_results(x,y) |- H) => (.->c[x,y] in h)
&% (h;_<-e.read_results<not_closed> |- H) => (!_->c[_,_] in h))

Figure 5: Component Electronic_Box.

the invariant of the interface specifies the communication
pattern with each client. Clients are independent from each
others thus the contract declared in each interface must en-
sure that clients can use some services whatever other clients
may do. For example, if a file must be opened by a client
before being read, a client following this rule must not be
affected by another client trying to read this file without
opening it.

Let us first detail the Electronic_Vote interface. The sym-
bol H denotes the history, that is to say a solution to the
formula. This invariant is a conjunction (denoted by &&) of
three implications. The first one says that a vote ends cor-
rectly if it is the first one: if a sequence (denoted by ;) of
a trace h and the termination of a vote is a prefix (denoted
by |-) of the history then h does not contain any termina-
tion of vote (! denotes the negation and in denotes ”is a
factor of”). The second part of the invariant describes the
converse situation: a vote ends by exception already_voted
if it is not the first one. The third part addresses another
problem: votes are accepted before the closure and results
are available after the closure. The closure may occur at any
time, the client of the interface cannot detect it except if he
receives a too_late exception or the results. This part of
the invariant says that any part h of the history following an
exception too_late in response to a vote or (denoted by |)
a termination of read_results, only contains responses to
method calls that are exceptions too_late or terminations
of read results (/<- denotes the projection? onto termina-
tion and exception events only).

Interfaces Vote_Center and Vote_admin have simpler speci-
fications. There is no invariant in the first one since there
is only one method whose use does not depend on anything
observable in this interface. We could have said that as soon
as the return value has been false, it remains false until
the end (the vote is closed) but the user is free to specify
properties or not if they seem not to be useful. The invari-
ant of Vote_Admin just says that a closure operation ends
normally if it is the first one: it is not possible to close the
ballot twice. The invariant does not specify at what point
the exception already_closed may occur because it is not

2The projection of a trace t onto a set of events E can be seen as the
operation that deletes in ¢ all the events that do not belong to E.

120

decidable in the interface: a client cannot predict if another
client has closed the vote before him.

In this example, we do not speak about initiation events:
the component implementing the interface is not responsible
for input events, it may only ensure its own outputs. Inputs
events are often used to specify several situations of the kind:
”if a client sends me this event before this one then this will
happen ...”.

Component invariants follows same syntax than interface
invariants, but a component invariant specifies the whole
communication pattern between this component and all other
components, clients or servers: at this stage it is possible to
specify the interleaving of its communications with several
other components. The trace set of a component is described
by its own invariant and the invariants of the interfaces it
provides.

Definition. (Trace set) Let us denote by X the alphabet
of a component ¢ and f1,..., fn its facets. The invariants
of the component and the interfaces are respectively denoted
by ¢, 01,...,pn. Then, the trace set of the component c is
defined by:

{te X | pt) AVie {1,...,n},V e p;(t/fi/c)}

where ¢’ denotes another component and t/f;/c the projec-
tion of t over the events that are communications through
the facet f; with c.

In other words, the trace set of c¢ is the set of words defined
on Y. that satisfy the invariant of ¢ and the invariant of
each facet of ¢ with respect to a projection over communica-
tions with another component through this facet?. Note that
there is a subtle difference between the alphabet’s definition
and the notation used: as soon as two components are con-
nected, the receptacle contains the reference of the interface
of the other component, so it may be used directly. Thus,
we use the notation c->r.m(x) instead of c->(c’:1) .m(%)
when the receptacle r of c is connected to the facet i of
c’. Similarly, we do not denote the current component by
this but by the name of the port involved in the communi-
cation, this allows us to easily distinguish communications
on different ports.

Gary T Leavens
120

Figure 4 gives the specification of the Center component, a
conjunction of five implications. The first and the second
ones say that the ballot may be closed at most once, other-
wise an already_closed exception is thrown. This invariant
differs from Vote_Admin interfaces’ invariant because of the
possible instantiations of mute symbol _: in the component
invariant, it may represent any other component each time
it appears. Thus we can say that a client calling the close
method receives an exception if the termination of close has
already occurred, whichever client has received this termi-
nation. The two following implications say that votes are
accepted while the closure has not been announced and that
they are rejected (return value false) as soon as the closure
is announced. The last implication is a little bit different
since it uses a function. The ”"functions part” of the speci-
fication is an auxiliary part that allows the user to define its
own functions for specification purposes only. The definition
of a function must start by the name of the function, and
the parameter and return value types. The function itself is
defined in a Prolog style by several clauses: the clause that
will be used is chosen by unification on the heads of clauses
in the order they are declared. Note that functions do not
have side effects on traces or values passed to them. The
result function calculates the result of the vote on a trace
of the component: it takes two parameters, a trace and a
boolean and it returns number of votes that appear in the
trace with the boolean as parameter value. If the trace is
empty, the result is 0 whichever boolean value is given as
input. If the trace ends by a vote termination event whose
parameter is the boolean which is currently counted, the re-
sult is the function applied to the beginning of the trace plus
one. If the trace ends by any other event, this event does
not affect the result. Let us return to the last part of the
invariant. If a close event succeeds, then an asynchronous
event has been sent with values x and y that are the correct
results of the vote. This example shows how powerful is the
specification language: it is possible to describe when calls
or exception occur but also to precisely calculate parame-
ters’ values.

The form of the specification of the Electronic_Box compo-
nent is very similar to the previous one, we only detail the
first part of the conjunction in which three components are
involved. It says that voters’ choices are correctly transmit-
ted to the center: each termination event of vote is immedi-
ately preceded (-1 is read as ”is a suffix of”) in the trace by
center’s method vote initiation event (i.e. vote) with the
same value of the vote x and matching termination with re-
turn value true. Thus, the vote has been transmitted and,
since the three events are consecutive, we can deduce that
there is one transmission for each vote.

To conclude on this example, the language allows us to ex-
press properties like protocols between several components
as well as precise descriptions of parameter values and case
when exceptions are thrown. The example of the function
result shows that it is possible to calculate, using a func-
tion, an abstract state of a component from the trace. Our
model supports synchronous (method calls) as well as asyn-
chronous (events) communication. Components may be im-
plemented using multi-threading, re-entering code and so on.
Anything concerning the implementation is out of our scope
so for example we cannot express the fact that a component

121

must be multi-threaded, but our model supports it.

3. V&V ACTIVITIES

As said in the introduction, our project aims at providing
tools to exploit the specification at different stages of the
component’s life. A formal specification provides a strong
reasoning basis to deal with the system’s properties. The
specification is all the more useful as automated tools are
provided. We propose to use the specification for differ-
ent purposes: to validate the specification, to ensure that
the component is conforming to the specification by way of
testing methods, to check the composability and the sub-
stitutability of components. We expose in this section the
different ideas, emphasizing the test phase which is the most
advanced part of the work.

3.1 Validation

Specification Validation. The first step is to ensure that
the specification satisfies the user’s requirements. A specifi-
cation written by a user is not systematically valid and may
contains two kinds of errors:

e errors using the language concepts that may lead to in-
consistency — e.g. an empty trace set or a trace set not
closed under prefix,

o design errors that may lead to under specification.

In order to detect such errors, validation tools must be pro-
vided to check the specification. Clearly, the general prob-
lem of the validation of specifications is undecidable so any
tool we provide will not be completely automatic.

To address this problem, we benefit from the work initiated
in Oslo for the OUN notation [17]. Even if the two nota-
tions are not exactly the same (there are objects in OUN
and components in our notation and it is syntactically more
restrictive) the basic concepts are very close so we can use
the same approach. The solution adopted in OUN is to use
the tools offered by the PVS toolkit [18, 6]: PVS provides
(among other things) a model-checker and a powerful theo-
rem prover. The particularity of the prover is to allow the
user to include proof strategies adapted to its own problems:
this increases the automation of the proofs. The idea is to
define the semantics of OUN in PVS in order to directly
use the PVS tools, the work of [13] may be adapted to our
notation.

Testing. As soon as the specification satisfies user’s re-
quirements, the problem is to obtain an implementation of
the component that conforms to this specification. One ap-
proach is to generate code from specification, this produces
a safe code but we rejected it for several reasons. First,
the goal of the ”component approach” is to free the devel-
oper from technical stuff to make him concentrate on busi-
ness logic: specialists are recognized to write efficient code
adapted to their domains. Second, our approach considers
components as interchangeable ”black boxes” and peculiar-
ities of the code are out of our scope. As most of the soft-
ware production lines do, we propose to use testing to check
a component’s correctness with respect to its specification.
The test process is detailed in the next subsection.

Gary T Leavens
121

Another problem is composition: how to be sure that two
components are compatible 7 Once components are shown
to conform to their specifications, the compatibility of two
components depends on the compatibility of their specifi-
cations. The effective connections of components are dy-
namical but port types may be used to statically check the
correctness of the possible connections during the validation
phase of the component (if there is one) or later during the
assembly phase. It suffices to check that each component
respects the contract of interfaces it uses and that each used
interface provides the expected services®. For that, we have
to check the compatibility of trace sets. A component ¢ will
behave correctly when assembled if (1) its traces relative
to the viewpoint we consider (here by the way of projec-
tion) satisfy the invariant of the interfaces it uses and (2) if
the used interfaces do not provide unexpected outputs (non-
deterministic components may have several outputs for the
same inputs). In other words:

Definition. (Connectable components) Let ¢ be a com-
ponent and T, be its trace set. The component ¢ is ”con-
nectable” if and only if for each type I of receptacles or ob-
ject parameters of ¢, for all component ¢ providing a facet
of type I, and for all trace t of To/I/c :

o(t), (1)
Yh € Tu/I/ce (b =1t/ =)= (h€ T/I/C). (2)

This definition is supposed to ensure compatibility of com-
ponents. This is the case when receptacles and parameters
used by a component are exactly of the declared type. The
following question concerns sub-typing: what happens if we
connect a receptacle of type I to a facet whose type is a
sub-type of I?7 We expect all static verifications to remain
valid whatever dynamic connections are made. For that, we
use behavioral sub-typing: a subtype will behave like any of
its super-types in the same context. Thus, the definition of
connectable components we gave is valid even if sub-typing
is used and we have a strong inheritance relation. ”Behave
like super-type” means for us that if we give the inputs of
the super-type to the subtype, the subtype produces outputs
that could have been produced by the super-type:

Definition.” (Behavioral Interface Inheritance) Let
I be an interface that inherits from Ji,...,Jn. Let the for-
mulas @1, ..., pn be the invariants of Ju, ..., J, respectively.
The inheritance relation of I is correct if and only if for all
component ¢ providing I and for all component ¢’ :

Vt € Te/I1/c Vi€ {1,...,n}[(t] ==t/Ti] =) = @i(t)]-

The correctness of the inheritance relations of interfaces
should be proved during the validation of the specification.
Note that component inheritance does not affect our verifi-
cations so it is not constrained.

The specification may also be useful at other stages in a sys-
tem’s life. We can for example evoke the maintenance: when

3As a matter of fact the same checks are necessary for each object
parameter, the process is identical.

4Using this definition, specifications are not inherited. This choice
gives some freedom in the sub-typing relations but may lead to exces-
sive writing work. We could add a stronger inheritance relation using
projection that would add more constraints on sub-typing but offers
specification inheritance.

122

can we say that two components are interchangeable ? Since
our model pays a large attention to interfaces, we can as-
sert that two components having the same ports are strictly
equivalent (we still speak about functionalities). This re-
lation may be too strong from a practical point of view: it is
interesting to replace a component by another one, different
but providing at least the same services in the same context,
we say that they may be substituted:

Definition. (Substitutability) 4 component ¢’ may be
substituted for a component c if:

e the services provided by ¢ may be provided by ¢’ i.e. for
each facet of c, either ¢ provides a facet of the same type
or it provides a facet of a behavioral subtype,

e the services required by ¢ are available i.e. receptacles
of ¢ are of the same types or behavioral super-types as
receptacles of c,

e ¢ and ¢ have the same sources and sink.

This definition works because of the behavioral inheritance
relation we defined earlier on interfaces. In some sense it
defines a kind of behavioral sub-typing for components.

3.2 Componenttesting

We have already explained the reasons which lead us to
chose a testing method to verify correctness of a component
towards its specification. In this subsection, we give some
more details about the testing process. Defining a testing
procedure requires to:

e select a representative set of test cases since exhaustive
testing is not tractable,

e have an oracle, that is to say something (another pro-
gram, a human, a specification, ...) able to decide if
the program gives the right answer when executed with
a test case,

e be able to execute the tests, that is to say run the tested
program with the chosen test cases (inputs) and check
(using the oracle) the program’s outputs correcteness.

Our proposition takes place in functional, unitary, and speci-
fication-based black-box testing. The use of formal specifi-
cations for testing has several well-known advantages, and
because of its form, the notation we propose has the follow-
ing ones:

e we use it to generate test cases which are traces, thus we
test a complete behavior involving several other compo-
nents, several methods, client and server aspects of the
component, and not a simple stimulus/response proto-
col,

e the specification is the oracle because traces contain in-
puts as well as outputs. Note that the specification
language form is very different from programming lan-
guages, thus avoiding redundancy errors.

Test-case generation. As a first step, we have to generate
a representative subset of a component trace set. The form
of the specification introduces two kinds of problems: first

Gary T Leavens
122

we have to generate sequences of events and secondly we
have to find parameter values that satisfy the constraints.

The invariant is a formula: terms and logical connectives.
First, we consider the formula from the viewpoint of propo-
sitional calculus where trace predicates are the atoms of the
formula. By finding all combinations of predicates that sat-
isfy this formula we are defining all possible behaviors of
this component, which is close to the classic disjunctive nor-
mal form partitioning techniques from the test literature [7].
Each solution gives us formulas to obtain sets of test cases.
The problem is then to generate these test cases. The terms
generate languages that contain variables constrained by
predicates. For example, the invariant of Electronic_Box
is a conjunction of implications. The resolution gives us the
disjunctive normal form we could have obtained by replac-
ing each A = B by (AAB)V (mAAB)V (-AA-B) and
distributing. So, for example one term of the disjunction is
given by Figure 6.

(h; <-e.vote(x) |- H)

(this->v.vote(x) ;this<-v.vote(x:true) -| h)
- (h;_<-e.vote<too_late> |- H)

= (_—>C[_,_] in h)

- (h;_<-e.read -results(x,y) |- H)

= (~>clx,y] in h)

- (h;_<-e.read_results<not_closed> |- H)
(!=>c[-,] in h))

>>>>>>>

Figure 6: A sample conjunction of Invariant terms.

The solution we adopted to obtain the traces is to use Pro-
LOG as introduced in [14]: operators on trace languages,
predicates, functions defined by users (which are already in
a PrROLOG-like form), ... may be defined as PROLOG clauses.
The goal of the program has one free variable which is H
thus, it enumerates the traces. To obtain a tractable test
case set, we have to define when to stop. We use the regu-
larity hypothesis introduced in [3] which formalizes the fol-
lowing idea: ”if we test all the test cases whose complexity
is lower than the complexity of the formula, then we can
consider that the formula is valid”. The problem is to de-
fine the complexity to use. For the moment, we consider the
number of operators allowing to generate the traces which
is not fully satisfying. When the sequences are built, the
last operation consists in instantiating parameter variables.
Constraints on parameters are given by predicates and we
use uniformity hypothesis introduced in [3] to select one rep-
resentative value for each domain.

Test-case execution. We obtain a set of test cases which
are traces, the problem is now to execute the traces. The
abstraction level of our model gives us traces that are not
directly executable. During the process development of com-
ponents, the IDL3 description is projected in IDL2 and then
some rules define projections onto different programming
languages. So we have to apply the same projections rules
to our traces to obtain the real traces that may be observed
during the component execution.

The development of a test platform aimed at EJB is in
progress. The basic idea is to use a test container. A com-

123

ponent under test is placed in the test container which mon-
itors the test executions: other components are represented
by stubs that transmit messages to the container.

4. RELATED WORKS

There is now widespread acceptance over the necessity to
specify software system and one acknowledges that having
a precise and unambiguous formal specification available is
a prerequisite in order to automate black-box testing.

Today there exist some proposals for specification languages
designed for Interfaces Definition Languages : for exam-
ple Larch/Corba [20] which is rather data-oriented due to
its roots in Abstract Data Type or Borneo [19] where con-
straints do not consider data. Note that these two proposals
only take into account server aspects of components.

In [5, 4] the authors extend general IDLs and then CORBA-
IDL with protocol information concerning supported and
required services using Milner’s polyadic w-calculus which
seems to be a more low level syntax language than ours and
[2] uses a formalism based on Petri Net to specify CORBA
component. The specification conformance with testing is
not addressed in these works.

The generalized use of UML notation and its various behav-
ioral formalisms (state-charts, collaboration and sequence
diagrams) brings out several approaches (and tools) for test-
case generation in object-oriented software. These works are
based on techniques closed to finite state machines or finite
labeled transition systems [9, 16, 12, 11].

Another class of approaches for test generation uses par-
tition testing techniques [3, 7, 1]. Even if these techniques
generally lean on model-based or algebraic specifications our
project will benefit from these works.

5. CONCLUSIONS

‘We have presented in this paper a component oriented for-
mal notation and some of the general definitions that can be
exploited to validate specifications and to prove component
properties. This work takes sense if tools are provided to
specify and validate implemented components. The work is
in progress, especially the test platform for EJB. Since Einar
Broch Johnsen recently finished the definition of OUN se-
mantics in PVS [13], we are now ready to exploit it to deal
with validation aspects. Some other aspects could impact
our work in the future. The first one is to address the gen-
eral composition problem: how to build a component from
components? In our context, the problem is to find a trace
set for the assembly from the component trace sets, it re-
lates to the problem of formal language reconstruction. The
second one is to describe a component which an applica-
tion needs and find it. This requires a specification of the
application and to be able to extract from it a component
specification (which is not the most difficult part). Clearly,
the major problem would be to search a component and the
automation of the search seems not to be tractable for the
moment. Anyway, if a candidate component is found by a
user, it is possible to compare its specification — if it has one
— to the specification deduced from the application’s or to
test it — if it has no specification, in order to be sure that it
is convenient for the application.

Gary T Leavens
123

6. ACKNOWLEDGMENTS

We are grateful for feedback from discussions with the GOAL
team, in particular Raphaél Marvie and Philippe Merle.
Jean-Marc Geib has provided valuable detailed advice con-
cerning this manuscript.

7. REFERENCES
[1] B. K. Aichernig. Systematic Black-Bozx Testing of
Computer-Based Systems through Formal Abstraction
Techniques. PhD thesis, Technischen Universitit Graz,
Germany, 2001.

[2] R. Bastide, O. Sy, and P. Palanque. Formal
specification and prototyping of CORBA systems. In
Proc. ECOOP’99, Lisbon Portugal, vol. 1628 of LNCS,
pp- 474-494, 1999.

[3] G. Bernot, M.-C. Gaudel, and B. Marre. Software
testing based on formal specifications: a theory and a
tool. IEEE Software Engineering Journal,
6(6):387-405, 1991.

C. Canal, L. Fuentes, J. Troya, and A. Vallecillo.
Extending CORBA interfaces with pi-calculus for
protocol compatibility. In Proc. TOOLS Europe’2000),
Mont Saint-Michel, France, pp. 208-225. IEEE
Computer Society Press, 2000.

[4

[llua)

[5] C. Canal, L. Fuentes, and A. Vallecillo. Extending
IDLs with pi-calculus for protocol compatibility. In
Proc. ECOOP’99 Workshop Reader, ECOOP’99
Workshops, Panels, and Posters, vol. 1743 of LNCS,
pp- 56, 1999.

[6] J. Crow, S. Owre, J. Rushby, N. Shankar, and
M. Srivas. A tutorial introduction to PVS. In Proc.
Workshop on Industrial-Strength Formal Specification
Techniques, Boca Raton, Florida, 1995.

[7] J. Dick and A. Faivre. Automating the generation and
sequencing of test cases from model-based
specifications. In Proc. FME’93: Industrial-Strength
Formal Methods, vol. 670 of LNCS, pp. 268284, 1993.

[8] V. Diekert and G. Rozenberg, editors. The Book of
Traces. World Scientific, Singapore, 1995.

[9] J. Hartmann, C. Imoberdorf, and M. Meisinger.
UML-based integration testing. In Proc. ISSTA 2000,
pp- 60-70, Portland, Oregon, 2000.

[10] C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[11] T. Jéron, J.-M. Jézéquel, and A. Le Guennec.
Validation and test generation for object-oriented
distributed software. In Proc. PDSE’98, Kyoto, Japan,
1998.

[12] J.-M. Jézéquel, A. L. Guennec, and F. Pennaneac’h.
Validating distributed software modeled with the
Unified Modeling Language. In Proc. UML’98 -
Beyond the Notation, Mulhouse, France., vol. 1618 of
LNCS, pp. 365-377, 1998.

[13] E. B. Johnsen and O. Owe. A PVS proof environment
for OUN. Research Report 295, Department of
Informatics, University of Oslo, june 2001.

10

124

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

B. Marre. Une méthode et un outil d’assistance a la
sélection de jeur de tests & partir de spécifications
algébriques. PhD thesis, Université de Paris-Sud —
Orsay, 1991.

R. Marvie and P. Merle. Corba Component Model:
Discussion and use with OpenCCM. Informatica,
submitted.

A. J. Offutt and A. Abdurazik. Generating tests from
UML specifications. In Proc. UML99, Fort Collins,
CO, pp. 416-429. IEEE Computer Society Press, 1999.

O. Owe and I. Ryl. A notation for combining formal
reasoning, object orientation and openness. RR 278,
Department of Informatics, University of Oslo, 1999.

S. Owre, J. Rushby, N. Shankar, and F. von Henke.
Formal verification for fault-tolerant architectures:
Prolegomena to the design of PVS. IEEE Transactions
on Software Engineering, 21(2):107-125, 1995.

S. Sankar. Introducing formal method to software
engineers through OMG’s CORBA environment and
interface definition language. In Proc. AMAST’96
Munich, Germany, vol. 1101 of LNCS, pp. 52-61,
1996.

G. Sivaprasad. Larch/CORBA: Specifying the
behavior of CORBA-IDL interfaces. TR 95-27a,
Department of Computer Science, Iowa State
University, 1995.

O. Sy. Spécification comportementale de composants
CORBA. PhD thesis, Université de Toulouse I, 2001.

C. Szyperski. Component Software — Beyong Object
Oriented Programming. Addison-Wesley, 1998.

Gary T Leavens
124

ACOEL on CORAL
A COmponent R _equirement and A_bstraction L_anguage

An Extended Abstract

Vugranam C. Sreedhar
IBM TJ Watson Research Center
Hawthorne, NY 10532

sreedhar@watson.ibm.com

ABSTRACT

CoRAL is alanguage for specifying properties of ACOEL,
a component-oriented extensional language. The design
of CORAL is based on input/output automata and type
state. The properties of ACOEL components that need to
be verified are specified using COrRAL. A verification en-
gine will then crawl through CorAL and verify whether
ACOEL can be safely executed or not. In this paper we
focus on CoRAL, and show how to specify properties of
AcCOEL. We will also briefly discuss the concurrent mod-
ification problem that is commonly encountered in the
iterator design pattern.

1. INTRODUCTION

The Internet has revolutionized the kinds of software
applications that are currently being developed. These
days people are talking about applications as services
just as electricity and telephone services. When software
are treated as services, it is important to ensure that they
are properly packaged as components that can be eas-
ily connected to other software components, and it is
even more important that (1) software components be
certified that it will not do any harm to other compo-
nents or the environment in which it is deployed, and (2)
the clients will properly use the components. ACOEL is
a component-oriented extensional language for creating
and plugging components together [22, 23].1 In ACOEL,
a component developer can specify and abstract prop-
erties and requirements of components using CORAL (a
COmponent Requirement and Abstraction Language).
Depending on the context in which a component is used,
a certification tool will try to certify that the component
is well-behaved and is safe for plugging into the system.

! AcoEL was initially called as York.

Copyright 2000 ACM 0-89791-88-6/97/0%5.00

In this paper we will mostly focus on CORAL.

There are two aspects to CORAL: abstraction and re-
quirements. Abstraction essentially suppresses the ir-
relevant details of a component so that one can focus
just on those properties that we wish to verify. There
is definitely a compromise between abstraction and the
level of details that one is interested in verifying. Re-
quirements are constraints that are necessary for proper
functioning of components. There are many different
kinds of requirements that a component will want to en-
force. For instance, a square root function sqrt(z) will
require that z is not a negative number. For proper
functioning of a FTP component, it is required that a
client first connects to a file server before getting files
from the server. Some of the popular modeling and
specification languages and tools in the literature in-
clude UML/OCL (Unified Modeling Language/Object
Constraint Language) [10], JML (Java Modeling Lan-
guage) [15], Larch [12], SMV [17], etc. Once the re-
quirements of a component are specified using one of
these languages, the underlying system will then encode
the specification into a mathematical structure and then
prove the required properties.

To ensure usability of an abstraction and specifi-
cation language, it is important to maintain a close
correspondence between the component concrete lan-
guage and the language used for specifying abstrac-
tion/requirement of components. JML, for instance, is
tailored to Java [15]. CORAL is a requirement and an
abstraction language for expressing and proving proper-
ties of ACOEL components. A componentin ACOEL con-
sists of a set of typed input ports and output ports. The
input ports of a component consists of all the services
that the component will provide, while the output ports
are all the services that the component require for cor-
rect functioning. A port type can be either an interface
type or a delegate type. An interface type consists of a
set of methods and named constants, whereas a delegate
type is an encapsulated signature of a method. The in-
ternal implementation of a component in ACOEL is com-
pletely hidden from the clients (i.e., a black-box compo-
nent). In CORAL, the set of input ports of a component
are abstracted as a set of input actions, the set of output
ports of a component are abstracted as a set of output ac-
tions and the internal implementations of a component

Gary T Leavens
125

are abstracted as a set of internal actions. The states of a
component, and of the environment are encoded using
state variables and data types. The above actions when
performed on a state will transform the state to another
state. In CORAL such state transitions are expressed us-
ing a state transition relations. The CORAL model of an
ACOEL component is very to close to an input/output au-
tomaton (I0A) [13].

The rest of the paper is organized as follows: Section 2
gives a brief introduction to ACOEL. Section 3 discusses
I0A modeling of CORAL. Section 4 introduces CORAL
using a simple example called the concurrent modifica-
tion problem. Section 5 discusses some of the related
work. Finally, Section 6 gives our conclusion and also
projects some of the future research direction.

2. ACOEL

The design of ACOEL was motivated by the following
component design principles.

e Pluggable Units A component is a unit of abstrac-
tion with clearly defined external contracts and the
internal implementation should be encapsulated.
The external contract should consist of both the
services it provides and the requirements it needs
when it is plugged or (re-)used in a system.

e Late and Explicit Composition. For a component to
be composable by a third-party with other compo-
nents, it must support late or dynamic composition.
During the development phase, requirements of a
component should only be constrained by some
external contract. Then, at runtime, an explicit con-
nection is made with other “compatible” compo-
nents (i.e., one that satisfy the constraints) to effect
late composition.

e Types for Composition. Typing essentially restricts
the kinds of services (i.e., operations or messages)
that can be requested from a component.

e Restricted Inheritance. In OO programming, it is
well-known that one cannot achieve both true en-
capsulation and unrestricted class inheritance with
overriding capabilities [21]. In AcCOEL, classes
(which support inheritance) are second-class citi-
zens, and are not visible to the external clients.

e No Global State. In ACOEL, there are no global vari-
ables and public methods that are visible to the en-
tire system.

Let us briefly illustrate ACOEL by implementing the
Iterator design pattern [11]. An Iterator pattern consists
of an aggregate (e.g., set, list, array, etc.) and an itera-
tor that traverses the aggregate. The main construct in
ACOEL iscomponent . A component consists of a set of
typed input ports and output ports. A List component,
defined below, consists of two input ports: one port is
used by the client code to add/get/remove list elements
and for creating an iterator, and the other port is used by
the iterator to add/remove/get list elements. A client
uses the following type to access services from the List
component.

126

interface CLIntf {
void add(int index, Elem e) ;
void remove(int index, Elem e) ;
Elem get(int index) ;
Listlter iterator() ;

}

An iterator component interacts with the List
ponent using the following interface.

com-

interface ILIntf {
void remove(int index, Elem e) ;
Elem get(int index) ;
void start() ; // start of the iterator
void end() ; // end of the iterator.

}

The start()
start and end an iteration, and iterator()
method that returns an iterator component.

Next we define the List component.

method and end() are basically used to
is a factory

component List {
in CLIntf clin ;
in ILIntf ilin ;
ListNode head = null ;
int count = 0 ;
List(){head = null ; count =0 ;}
class ListNode {
Elem e ;
ListNode n ;
ListNode(){} ;

}

class CLCls implements CLIntf, ILIntf {
void add(int index, Elem e) { ..};
void remove(int index, Elem e) {...};
Elem get(int index) {...} ;
int count(){return count ;}
Listlter iterator() {

return new Listlter(This) ;

}
void start() { ...}
void end() { ...}

}
attach clin to CLCls ;
attach ilin to CLCls ;

}

The attach statement essentially attaches an input port
to a particular implementation class inside the compo-
nent. Any messages that arrive at an input port is for-
warded to the instance of the class that is attached to
the input port. The class instance will either process the
message or it will delegate to another class instance in-
side the component.

Next we define the Listlter component. It consists
of one input port and one output port. The output port
ilout isused to connect to the input portilin of List
A client component uses the input port clin for access-
ing services of the Listlter . First let us define the type
Clintf of input port clin

Gary T Leavens
126

Client

cl out

) List
clin

ci out

ilin

ciin

il out

Iterator

Figure 1: Various components in Iterator pattern

interface Clintf {
Elem next() ;
Elem start() ;
boolean hasNext() ;
void remove() ;

}

A client component uses the start()
a new iteration. Here is the Listlter
iterating over the elements of a list.

method to start
component for

component Listlter {
in Clintf clin ;
out ILIntf ilout ;
Listlter(List |) {
connect ilout to Lilin ;
pos = 0 ;
}
int pos 0 ;
class ILCls implements ILIntf {
Elem next() {
Elem e = ilout.get(pos) ;
pos++ |
return e ;
b
Elem start(){
ilout.start() ;
pos = O ;

}

boolean hasNext() {
if (pos < ilout.count())
return true ;
ilout.end() ;
return false ;
b
void remove() {...} ;

}

attach clin to ILCls ;

A client component has to first explicitly connect to
a component before obtaining the services. Notice that
Listlterator can invoke services of List component

127

via its own output port ilout
connected to input port ilin
stance.

Finally, here is a client code that wants to access the
List component and the Listlterator component.

, and this output port is
of List component in-

component Client {
out Clintf ciout ;
out CLIntf clout ;
main() {
List | = new List() ;
connect clout to l.clin ;
/l add a bunch of elements ...
Listlterator li = Literator() ;
connect ciout to li.ciin ;
ciout.start() ;
while(ciout.hasNext() {
Elem e = ciout.next() ;
}

}

Figure 2 shows the overall structure of the iterator pat-
tern. There can be more than one iterator that is simul-
taneously active. A client will typically use the itera-
tor created by the list component (through the factory
method iterator()). The list component can ensure
that it will only interact with iterators that it created for
a client. Whenever there are multiple simultaneous iter-
ators, there is a potential for concurrent modification of
the list by multiple iterators (which will lead to incon-
sistent states). We will discuss this problem later in the
paper.

3. MODELING COMPONENTS

A component in ACOEL consists of (1) an external con-
tract made of typed input and output ports, and (2) an
internal implementation consisting of classes, methods,
and data fields. A client can only see the external con-
tract and the internal implementation is completely en-
capsulated. A component provides services via its input
ports, and specifies the services its requires via its out-
put ports. In ACOEL, aconnect statement makes an ex-
plicit connection between an output port of a component
to a “compatible” input port of another component. Let
connect ¢ {po) to @(g:) be aconnect statement. For this
connection to be compatible, it is necessary that ¢; <: p,.
The sub-type relation ensures that any message sent over
the connection by ¢; can be processed by é». But the sub-
type relation is not sufficient to ensure port compatibil-
ity. In ACOEL, we enforce other kinds of constraints us-
ing CORAL.

We use a framework that is similar to input/output
automaton (IOA) to model ACOEL components. Ab-
stractly, a component automaton (CA) consists of a set
of actions, a set of state, and a set of transitions. The
set of actions are classified as either input actions in(A)
(corresponding to messages arriving at input ports), out-
put actions out(A) (corresponding to the requirements at
output ports), and internal actions int(A) (corresponding
to internal calls). Let acts(A) = in(A) Uout(A) Uint(A).

Similar to I0A, a CA A consists of the following four
components:

Gary T Leavens
127

e sig(A), asignature
e states(A), a set of states (not necessarily finite)
o start(A) C states(A), a set of start or initial states

o trans(A) C states(A) x acts(sig(A)) x states(A),
a state-transition relation, such that for every state
s and every input action «, (s, 7, s') € trans(A).

An action 7 is enabled in a state s if (s,7,s') €
trans(A). Input actions are enabled in every state (i.e.,
a component cannot block messages arriving at its in-
put ports). This is not a big restriction, since almost al-
ways we can throw an error condition for messages that
a component cannot handle (also, we can use the type
system to ensure that no arbitrary message arrives at in-
put ports of a component).

There are few differences between a regular IOA and
the kinds of programs that we are dealing with in
ACOEL. First, components in ACOEL can be dynami-
cally created and destroyed. Also, each component has
its own state. In AcOEL there are no global variables
and methods. Since component instances are dynami-
cally created and destroyed, an IOA model should in-
clude actions for creation and destruction of automaton
and for modeling system of automaton. To model dy-
namic creation of components, we introduce a create ac-
tion crt(A) that corresponds to creation of an automaton
A. The crt(A) will also invoke the constructor function
that modifies the state of A. The create action cr¢(A)
can be thought of as an input action to the newly cre-
ated automaton A, and the input action will invoke the
constructor methods of the corresponding component.
The create action will be executed by another automaton
for creating a new automaton. At any instance, only a
finite set of automaton exists. We can think of a configu-
ration C as a finite set {{A1, s1),...(An, sn)}, Where A;,
for 1 < i < n, is automaton identifier and s; is the state
of A;. An action 7 essentially changes a configuration C
to a new configuration C’, a create action will add a new
automaton to C, and all other action will simply change
the states of existing automaton.

4. THE CorAL LANGUAGE

In this section we will briefly introduce CORAL using
the iterator pattern example. Our intention is only to ex-
pose the core ideas behind CORAL. A component au-
tomaton (CA) consists of two main parts: (1) states
and (2) transitions . The states part consists of a
set of state variables, whose types can be either primi-
tive or composite data types. Primitive data types in-
clude char , string , int , float , and reference type.
Composite data types can be either in-built types or user-
defined types. In a types part one can define new data
types (see Figure 2). The transitions part consists
of a set of state transition written in the style of pre-
condition-effect-error for each action. This is illustrated
in ListAutomaton , a CORAL automaton for the List
component (see Figure 2). For each action, we list the
pre -condition part, the eff ect part, and the error part.
Whenever the pre-condition part is satisfied, the eff
part is executed otherwise the error part (if defined) is

128

coral ListAutomaton {
types:
Iter {
int id ;
enum st = {active, passive} ;
}
states:
int srcld ;
List | ; // list type
Iter iter[] ; // a hash of iterators.
transitions:
input void CLIntf.add (int index, Elem e) {
pre:
(forall i iter[i].st==passive) &&
(l.length < index)
eff:
Linsert(index, e) ;
error:
throw AddException ;

input void CLIntf.remove(int index, Elem e) {
pre:
(forall i iter[i].st==passive) &&
(l.length < index)
eff:
l.remove(index, €) ;
error:
throw RemoveException ;
}

input Elem CLIntf.get (int index) {
pre:
(llength < index)
eff:
error:
throw GetException ;

}
input CLlintf.iterator () {
pre:
eff:
/Il add a new iterator to iter
int newsrcld = create Listlterator
iter.add(newsrcld) ;
return newsrcld ;

}
input ILIntf.start() {
pre:
eff:
iter[srcld].st = active ;

}
input ILIntf.end() {
pre:
eff:
iter[srcld].st = passive ;

}
input Elem ILIntf.get (int index) {
pre:
(iter[srcld] == active)
(l.length < index)
eff:
error:
throw GetException ;

input ILIntf.remove() {

pre:
(iter[srcld] == active) &&
(forall i and il=srcld

{iter[i].st==passive}) &&
(llength < index)
eff:

l.remove(index, €) ;
error:

throw RemoveException ;

Figure 2: CoRrAL for List

component.

Gary T Leavens
128

executed. The eff part essentially performs state trans-
formations.

For the example in Figure 2, the states part consists
of three states: srcld is the identity of the source com-
ponent that is invoking the input action. | is a list with
operations such insert , remove, etc. An insert op-
eration will add an element to | and changes the state
of| toanew!| . Theiter state keeps track of all itera-
tors that a client created. A create operation will essen-
tially create a new iterator identity and saves it in iter
Consider the input action CLIntf.add() ,the eff part
will be executed only if all the iterators in iter[] are
passive and the index is less than the length of the list.
Otherwise the error part is executed.

We essentially translate a CA to an IOA, and then ver-
ify propertiesin IOA. An input action in CA also returns
a value (which can either a normal value or an error con-
dition). So an input action in CA is translated into a in-
put action followed by an output action in IOA. The pur-
pose of the output action is to return a value or an error
condition back to source component. We do the same
for an output action in CA (i.e., it is also broken into an
output action followed by an input action).

Unlike in I0A, in CA we typically do not perform
composition operation explicitly—we typically verify
whether a composition is a valid composition, and the
actual composition is effected by subtype relation be-
tween ports via connect statement. There are two
kinds of verification we are interested: invariance and
reaching an error state. An invariance is a property that
is true in all reachable states. Reaching an error state
means that a pre-condition fails and an “error” state is
reached. An execution of an automaton is a finite se-
quence of s,, 71, ..., 7T, Sn, With so being a start state of
the automaton. A state is reachable if it occurs in some
execution. Our main goal is verification of safety prop-
erties (rather than liveness or fairness properties).

Let us briefly illustrate one kind of verification prob-
lem, called concurrent modification problem (CMP).
This problem was motivated from Ramalingam et
al. [18]. We have simplified the problem from what is
described in Ramalingam et al. [18]. The main problem
with CMP is that when an iterator is active a modifica-
tion to the underlying aggregate structure can cause an
inconsistency between the iterator and aggregate struc-
ture. Most implementation of an iterator pattern will al-
low modification to an aggregate structure only through
the iterator (especially when an iterator is active). Let
us slightly modify the client code given in Section 2 and
include the statement l.add(0,e) in the while-loop.

component Client {
out Clintf ciout ;
out CLIntf clout ;
main() {
List | = new List() ;
connect clout to l.clin ;
/I add a bunch of elements ...
Listliterator li = literator() ;
connect ciout to li.ciin ;
while(ciout.hasNext() {
Elem e ciout.next() ;

129

l.add(0,e) ;
}
}

In the ListAutomaton the pre condition for l.add
will fail since an iterator in iter state may still be ac-
tive. Although the above example looks trivial there are
many non-trivial phases that one has to go through be-
fore coming to the conclusion. For instance, we need
alias analysis information to disambiguate different it-
erators. We need to use theorem proving techniques
to verify invariants defined in the pre-conditions. We
have used end() method to explicitly terminate an it-
erator. Compared to Ramalingam et al., our approach
gives very conservative result. It is to be noted that our
intention in using CMP is only to illustrate the use of
I0A for verifying this, albeit simplified, problem.

5. DISCUSSION AND RELATED WORK

Verifying software system is an age-old, but certainly
not a solved problem. Many specification and verifi-
cation techniques have been proposed in the literature
for ensuring that software systems are safe and well-
behaved [2, 14, 24, 3, 12, 7, 20]. With the advent of the
Internet-based applications it is even more important to
ensure safety and security of software system. In this
paper we presented CORAL for abstracting and spec-
ifying requirements of ACOEL components. We used
I0A for modeling AcCoOEeL components. Typically in the
past, IOA has been used to model distributed system.
In CorAL we use IOA to verify whether a component
when plugged into a system will behave correctly, and
also whether a client of the component will use the com-
ponent correctly or not. CORAL can be used to ver-
ify other kinds of constraints such a protocol verifica-
tion [25]. We can simply encode the correct sequences
of method calls using an automaton.

This paper presents a preliminary experience of us-
ing IOA for software verification. There are many open-
ended problems that needs to be resolved. Handling
aliasing, sub-type polymorphism, etc. presents some in-
teresting challenges. Recently Attie and Lynch proposed
dynamic IOA that can handle dynamic creation and de-
struction of automaton. Rather than thinking in terms
of single automaton, dynamic IOA goes one step further
and defines a configuration of interacting automata [4].
We are currently exploring on how to use the full po-
tential of dynamic IOA in CORAL. For verification pur-
poses we have to deal with practical programming lan-
guages which typically include aliasing and polymor-
phism. Unlike IOA, our main goal is verification of com-
ponents. One component can be connected to another
component through their ports if the corresponding port
types have a sub-type relation (i.e., the input port should
be a subtype of the output port). We use CORAL to go
beyond subtype relation and verify other kinds of con-
straints [16].

Model checking is a classical approach to verification
of software systems [8]. Bandera is a collection of tools
for model-checking concurrent Java programs [9]. It
takes Java source code, compiles them, and generates
code for verification tools like SMV and SPIN. SLAM

Gary T Leavens
129

project is very similar to Bandera project, except that
SLAM also uses predicate abstraction and discovery to
point errors in C code [5]. Strix is specification lan-
guage for expressing business process and a Strix com-
piler once generates code for SMV model checker [6].
CANVAS uses EASL specification and translate them to
a 3-valued logic for verifying program properties [18].
JML is a Java Modeling Language and it uses design-
by-contract and Larch theorem prover to verify program
properties [15]. There are several other projects related
to software verification.

Another important, but related, area is the Architec-
ture Description Language (ADL) [19]. A software sys-
tem is typically starts off with a requirement and a de-
sign phase. During this phase, the implementation de-
tails are typically ignored and the focus is on under-
standing and developing software architecture. ADLs
are typically used at this phase to specify the structure
and the requirements of a software system. ArchJlava is
an example of integrating ADL with Java [1]. CORAL
can be used as a ADL. One can express the requirements
of ACOEL components, even before implementing them
using CORAL. To use as an ADL, we need a way to com-
pose component automaton. For this we rely on IOA
theory of composing automaton.

6. CONCLUSION

In this paper we briefly introduced CORAL as a lan-
guage for abstracting and specifying ACOEL compo-
nents. CORAL is based on IOA. Unlike classical IOA, our
intention in using the theory of I0A is for verification
of software components. We are currently working on
three aspects of CORAL. First we are refining on the syn-
tax and semantics of COrRAL. Second, we are focusing
on the dynamic IOA model for CORAL. Finally, we are
looking at ways to model aliasing, sub-typing, classes,
and other states within IOA. Both AcoeL and CoRAL
are at design stages, and we are at initial stages of imple-
mentation. We expect to publish more details of CORAL
in the near future.

Acknowledgement

| thank Deepak Goyal for valuable discussions and com-
ments on an earlier draft of the paper.

7. REFERENCES

[1] Jonathan Aldrich and Craig Chambers. Archlava:
connecting software architecture to implmentation.
Technical Report UW-CSE-01-08-01, Univ. of
Washington, August 2001.

Dean Allemang. Extending the applicability of
formal verification techniques. In Gary T. Leavens
and Murali Sitaraman, editors, Proceedings of the
First Workshop on the Foundations of
Component-Based Systems, Zurich, Switzerland,
September 26 1997, pages 1-10, September 1997.

R. Allen and D. Garlan. A Formal Basis for
Architectural Connection. ACM Transactions on
Software Engineering and Methodology, 6(3):213-249,
June 1997.

(2]

(3]

130

[4] Paul C. Attie and Nancy A. Lynch. Dynamic
input/output automata: a formal model for
dynamic systems. In CONCUR’01: 12th
International Conference on Concurrency Theory,
LNCS. Springler-Verlag, 2001.
T. Ball and S. Rajamani. Checking temporal
properties of software with boolean programs. In
Proceedings of the Workshop on Advances in
Vferification, 2000.
B. Bloom. Seeing by owl-light:Symbolic model
checking of business application requirements.
Technical Report 22?2, IBM T.J. Watson Research
Center, 2001.
William Chan, Richard J. Anderson, Paul Beame,
Steve Burns, Francesmary Modugno, David
Notkin, and Jon D. Reese. Model checking large
software specifications. IEEE Transactions on
Software Engineering, 24(7):498-520, July 1998.
Edmund M. Clarke, Orna Grumberg, and David E.
Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems,
16(5):1512-1542, September 1994,
James C. Corbett, Matthew B. Dwyer, John Hatcliff,
Shawn Laubach, Corina S. Pasareanu, Robby, and
Hongjun Zheng. Bandera: extracting finite-state
models from java source code. In International
Conference on Software Engineering, pages 439-448,
2000.
Martin Fowler and Kendall Scot. UML Distilled:
Applying the Standard Object Modeling Language.
Addison-Wesley, 1997.
Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements od Reusable
Object-Oriented Software. Addison-Wesley
Publishing Company, New York, NY, 1995.
S. Garland, J. Guttag, and J. Horning. An overview
of Larch. In Functional Programming, Concurrency,
Simulation and Automated Reasoning, pages 329-348.
Springer-Verlag Lecture Notes in Computer
Science 693, 1993.
S. Garland and N. Lynch. Using i/o automata for
developing distributed systems. In Gary T.
Leavens and Murali Sitaraman, editors,
Foundations of Component-Based Systems, pages
285-312. Cambridge University Press, 2000.
M. Goedicke, H. Schumann, and J. Cramer. On the
specification of software components. In
Jean-Pierre Finance, editor, Proceedings of the 6th
International Workshop on Software Specification and
Design, pages 166-174, Como, Italy, October 1991.
IEEE Computer Society Press.
Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: a java modeling language. In Formal
Underpinnings of Java Workshop (at OOPSLA ’98),
1998.
B. H. Liskov and J. M. Wing. A behavioral notion
of subtyping. ACM Trans. Prog. Lang. and Sys.,
16(1):1811-1841, November 1994.
[17] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, Norwell Massachusetts,

5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Gary T Leavens
130

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

1993.

G. Ramalingam, A. Warshavsky, J. Field, and

M. Sagiv. Deriving specialized heap analyses for
verifying component-client conformance.
Technical Report RC22145, IBM T.J. Watson
Research Center, August 2001.

Mary Shaw and David Garlan. Software
Avrchitecture: Perspectives on an Emerging Discipline.
Prentice-Hall, 1996.

Murali Sitaraman, Lonnie R. Welch, and

Douglas E. Harms. On specification of reusable
software components. International Journal of
Software Engineering and Knowledege Engineering,
3(2):207-229, 1993.

Alan Snyder. Inheritance and the development of
encapsulated software components. In Bruce
Shriver and Peter Wegner, editors, Workshop on
Object-Oriented Programming, pages 165-188,
Camebridge, MA, 1987. MIT Press.

Vugranam C. Sreedhar. ACOEL: A
component-oriented extensional language.
Technical report, IBM T.J. Watson Research Center,
2001.

Vugranam C. Sreedhar. York: Programming
software components. In Joint 8th European Software
Engineering Conference and 9th ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, 2001. Poster session.

D. Yellin and R. Strom. Protocol specifications and
component adaptors. ACM Transactions on
Programming Languages and Systems, 19(2):292-333,
1997.

Daniel M. Yellin and Robert E. Strom. Protocol
specifications and component adaptors.
Transactions on Programming Languages and Systems,
19(2):292-333, March 1997.

131

Gary T Leavens
131

Non-Functional Requirements in a Component Model for
Embedded Systems

Position Paper

Roel Wuyts
Software Composition Group
Institut fur Informatik
Universitat Bern, Switzerland

roel.wuyts@iam.unibe.ch

ABSTRACT

In this paper we describe an interesting context to study
formal methods for component systems: embedded devices.
The context of embedded devices is highly constrained by
the physical requirements the devices have to adhere to.
As a result, component models for embedded devices are
not general purpose but geared towards these constrained
contexts. In this paper we give the concrete setting of the
Pecos project (a project with as goal component engineering
for embedded devices). We describe the Pecos component
model, and show possibilities where we think formal verifi-
cation could be useful. We would like to use this as a very
concrete example to discuss formal verification techniques.

1. INTRODUCTION

Software for embedded systems is typically monolithic and
platform-dependent. These systems are hard to maintain,
upgrade and customise, and they are almost impossible to
port to other platforms. Component-based software engi-
neering would bring a number of advantages to the embed-
ded systems world such as fast development times, the abil-
ity to secure investments through re-use of existing compo-
nents, and the ability for domain experts to interactively
compose sophisticated embedded systems software [7].

The goal of the PECOS (PErvasive COmponent Systems)
project (a European Esprit project) is to find solutions for
component oriented development (COD) for embedded sys-
tems . In this context we are developping Comes (a general
Component Meta-Model) and the Pecos Model (a special-
ization of Comes targeted towards embedded systems in the
context of the project).

In Comes, components are black-box encapsulations of be-
havior. They have interfaces that consist of properties and
ports, can contain subcomponents, and have consistency

132

Stéphane Ducasse
Software Composition Group
Institut fir Informatik
Universitat Bern, Switzerland

ducasse@iam.unibe.ch

rules that express structural integration internal to the com-
ponent (for example, to check dependencies between prop-
erties). The ports of components are connected by explicit
connectors. Consistency rules of the composite component
can reason about the properties of the composite, but also
on the connectors and the properties of the sub components.

The Pecos Model is a specialization of Comes to explicitly
support components for embedded devices in the context of
the Pecos project. Interesting is that this puts a lot of ex-
tra constraints on the component model. We firmly believe
that this will allow us to use formal (mathematical) tech-
niques to verify non-functional requirements of the modeled
components. More specifically, we want support regarding
timing and scheduling and memory consumption.

For this workshop we see ourselves as the providers of an in-
teresting problem and problem context. We believe that the
extra constraints imposed by the context of our component
model make it a good example to use and assess the func-
tionality of formal techniques. Coming from a practical, less
formal discipline of software engineering and programming
language design, we want to discuss with the more math-
ematically enclined researchers on how to come to formal
support for specifying and checking components.

In the rest of the paper we introduce the specific problem
context of embedded systems in more detail. Then we show
the current version of the component model. Finally we
enumerate the places where we think that formal techniques
could help us, and discuss techniques we think are of interest
to us.

2. THE EMBEDDED SYSTEMS CONTEXT

A massive shift is going from desktop applications to em-
bedded systems, where intelligent devices taking over roles
that are currently done in desktop applications. Moreover,
the capabilities of embedded devices augment rapidly, and
their responsibilities increase likewise. Distributed embed-
ded devices (intelligent field devices, smart sensors) not only
acquire but also pre-process data and run more and more
sophisticated application programs (control functions, self-
diagnostics, etc.).

The drawback of this evolution is that the software needs

Gary T Leavens
132

Gary T Leavens

to follow. Here the story is less positive: the software engi-
neering techniques that are typically employed are lacking
far behind software engineering techniques for mainstream
applications. Currently software for embedded devices is
written in assembly or C, in a monolithic fashion, with a
typical development time of two to three years. The reasons
for this are two-fold. The first reason is the specific con-
text of embedded devices (with all the constraints of power
comsumption and simple hardware as a result of this). The
second reason is that, up until a couple of years ago, the mar-
ket for embedded devices was relatively small, and was thus
neglected by the big players from desktop applications. For
example, operating systems or development environments
are hard to find for embedded systems.

The goal of the PECOS (PErvasive COmponent Systems)
project is to apply solutions for component oriented devel-
opment (COD) in the context of embedded systems. As in
desktop applications, the overall goal is to have more reuse,
higher quality and reduced development time. Key factor
in the project is the component model to support compo-
nents for embedded systems. Before we have a look at this
model, we first introduce the Pecos component development
process, and field devices, the embedded systems the Pecos
model should support.

2.1 Pecos Process

Part of the solution of the Pecos project is a component de-
velopment process. In this section we give a quick overview
of this process, as this will help to introduce some choices
made in the Pecos Component Model. The process consists
of two main phases: the component construction phase and
the field device assembly phase.

The component construction phase defines what is needed
to develop a single component (that possibly contains sub-
components), instrument it (to provide information about
runtime aspects of the component), and put it in the com-
ponent repository. It specifies the following workflow:

e the component is created. This means defining the
basic properties and the interface of the component.

e the subcomponents are filled in. If the component has
subcomponents, then these subcomponents need to be
selected from the repository and added to the com-
ponenent. They also need to be connected with each
other.

e the component is checked. In this phase, a structural
check is performed to make sure that everything is
specified according to the model, and that the given
information follows the rules in the model. For exam-
ple, when the model specifies that a component should
have a name, then this is checked at this moment.
Also, when type information needs to be given it is
checked that the given types exist. Or, if there are
subcomponents, their connections are checked.

e generating skeleton code. When the check succeeds,
meaning that the component’s structure is verified,
skeleton code can be generated.

133

e filling in the skeleton: the skeleton code has to be ex-
tended into a full working implementation.

e instrumenting the component: the component is then
ready to be instrumented. In this phase it is deployed
in a standard environment so that certain runtime in-
formation can be gathered. What information depends
on the model. Since in the Pecos model we want to
check scheduling information and memory consump-
tion, basic figures need to be extracted. Note that we
need the instrumentation because we see components
as black-box abstractions where we have no idea about
their internals. If this constraint is lifted, the instru-
mentation phase could be made simpler or even omit-
ted. We discuss this in more detail when we discuss
the non-functional checks.

e the instrumented component is then added to the com-
ponent repository.

A second activity is to assemble components into field de-
vices (the actual embedded systems that need to be modeled
in the context of Pecos). This activity consists of the fol-
lowing steps:

e select a template for the field device that needs to be
created

e select the components that need to be filled in to in-
stantiate the field device

e connect the components

e perform structural checks on the instantiated field de-
vice

e perform non-functional checks using the information
provided by the components. For example, make sure
that the total power consumption of the chosen com-
ponents does not exceed the limit of the Field Device,
or that a schedule can be found to schedule the com-
ponents.

e generate the code for the field device

e deploy the component on the actual hardware

In the next section we have a look at Field Devices, the
actuall embedded systems used in the project. Then we in-
troduce the model to support the specification and checking
of these devices.

2.2 Field Devices

Field devices are embedded reactive systems. A field device
can analyze temperature, pressure, and flow, and control
some actuators, positioners of valves or other motors. Field
devices impose certain specific physical constraints For ex-
ample a TZID (a pneumatic positioner) works under the
following very hard constraint: the available power is only
100 mW for the whole device. This limits severely the avail-
able CPU and memory resources. The TZID uses a 16 bit
micro-controller with 256k ROM and 20k RAM (on-chip),
and communicates using fieldbus communication stacks (an

Gary T Leavens
133

interoperability standard for communication between field
devices). The device has a static software configuration,
i.e., the firmware is updated/replaced completely, and there
is no dynamic loadable functionality.

As a result from the physical constraints (especially the very
harsh power consumption requirements), the runtime envi-
ronment and the software are subject to the following con-
straints:

e One processor: all the components composing a field
device are running on a single processor, that is very
slow when compared to mainstream processors.

e One monolithic piece of code: after assembling the
different components that compose a field device, the
software for the field device forms one single piece that
is deployed.

e No dynamic change: At run-time (after the field de-
vice is initialized) there is no memory allocation, nor
dynamic reconfiguration.

e Single language per application: a component is cre-
ated in a single language like C or C++.

e Multi-threading: field device components can be run-
ning on different threads. The scheduling is carried out
by either the OS or by an explicit scheduler. However,
most of the components are passive and scheduled by
a central scheduler. Components that are active (that
have their own thread) are typically the ones close to
the hardware. They are responsible for regularly read-
ing values from this hardware, such as the current mo-
tor position or speed.

e Components communicate by sharing data contained
in a blackboard-like structure. Components read and
write data they want to communicate to this central
memory location.

e Some components are described by state automata.
Some components have state, others are stateless be-
cause they are only representing algorithms.

e Components only offer interfaces in terms of in/out
ports. The component state automata definition, or
other behavorial descriptions, are not available. This
is a very hard requirement, as this means that a lot of
existing formal verification techniques are not usable.

e A field device architecture is fixed. It is composed by
an Analog component controlling the overall workings
of the device, a Transducer component that interfaces
to the hardware, a HMI component for the Human-
Machine interaction and an EEPROM component to
store data in non-volatile memory.

3. THE PECOS COMPONENT MODEL

The Pecos Component Model is the foundation of the Pecos
project. Its goal is to allow to specify and check components
and Field Devices, given the constraints given above. In
this section we iterate over the requirements for the model,
introduce its main aspects. In the next section we then look
at how formal techniques could be applied in this context.

134

3.1 Requirements

The goal of the Pecos Component Model is to be able to
model and check a field device. More specifically, it has to
allow:

e to specify individual components (that can contain
subcomponents);

e to connect components;
e to assemble components into Field Devices;

e to check the structure and well-formedness of compo-
nent compositions and Field Devices;

e to check non-functional requirements of Field Devices.
More specifically, timing and scheduling of components,
and their memory consumption;

3.2 Model Overview

In the constraints imposed by the context of embedded sys-
tems on field devices we already saw that Field Devices fol-
low a blackboard-like achitecture. Hence, there is a central
block of memory (called the Object Manager, or OM for
short) that holds all the values that need to be passed be-
tween components in a field device. The OM is filled when
the field device is initializad. At runtime, its structure does
not change (as there is no allocation at runtime after the
initialization). Components that need to share data to do
by writing and reading from the OM.

Normally, when components would all be running in their
own thread and hence in parallel, locking and synchroniza-
tion of the OM would certainly be needed. However, in the
specific context of a field device such a solution, (typical solu-
tion for desktop applications), is not possible. The reason is
that it’s too expensive in both processing power and memory
consumption, and that OS facilities to support locking and
synchronization are not always available or very costly. Field
devices solve the problem by providing one central scheduler
that sequentially schedules all components. Hence, at any
moment in time, only one component has access to the OM
and thus no locking is needed. Of course, this introduces
other problems as well, that we will discuss in detail later
on when we talk about supporting (checking) non-functional
requirements.

The Pecos model builds on our experiences with support-
ing Software Architectures using logic programming lan-
guages [6]. The main constituents are components, ports
and connectors:

e component: a Pecos component has a name, contains
information regarding scheduling and memory consump-
tion (see further), has a list of data ports and possibly
has a list of subcomponents and connectors for these
subcomponents;

e data ports: a data port indicates that the component
provides or needs data for other components. It con-
tains a type (of the data that will be passed, such as
Float), a direction (in, out or inout),

Gary T Leavens
134

e connectors connect data ports of components, and hence
model a data dependency between two ports. Connec-
tors contain the names of the component and the ports
they connect

Besides this structural information, we also check some Pecos
specific constraints, such as type and range information on
ports. Table [1] lists all the structural checks that can be
performed.

Besides the components and connectors, the Pecos model
also offers a Field Device template. This is a template com-
ponent that has to be instantiated with 4 concrete compo-
nents. The Field Device component specifies the structure
and the behaviour of a field device in such a way that its
structure and semantics can be checked, and that code can
be generated from it. To instantiate the field devoce, four
components and their connections that have to be specified:

e Human Machine Interface Component: a field-device
can be equipped with displays and other devices so
that users can inspect or modify the behaviour from
the device itself

e Non-volatile memory Component: the state of the com-
ponent needs to be written to certain kinds of memory

e Input-Output-Controller Component: the data from
the device component typically consist of raw values
that are immediately related to the hardware contained.
The function of this component is to provide an in-
terface to the other non-hardware related components
that is not hardware specific. For example, it can scale
raw data from the hardware so that the display can
show the value of a temperature controller in degrees
Celsius.

e Device Component: all components that deal with the
hardware are encapsulated by this component.

The result is a Field Device that can be checked for well-
formedness (making sure that everytthing conforms to the
structural rules) and for non-functional requirements. These
last checks are the topic of the following section.

4. CHECKING OF NON-FUNCTIONAL RE-
QUIREMENTS

The previous sections described the context of field devices
and the Pecos component model to model components for
field devices. However, it didn’t give much information
about the checking of non-functional requirements. In this
section we describe what we would like to support, and what
we are currently doing. We also give information about re-
lated formal work that we think could be useful (but that
we not use at the moment of writing).

In the Pecos project we want to support two issues, that we
have already touched upon throughout the paper: schedul-
ing of components and memory consumption. We explain
these two issues in more detail, and then have a look at
opportunities we see for formal verification.

135

4.1 Component Scheduling

We already explained that in field devices we do not want
to use regular locking of data, but instead want to schedule
the components sequentially such that this is not needed.
Hence, a very important aspect that needs to be checked
when a field device component is instantiated is the sched-
uler.

More specifically, we currently instrument every individual
component with information regarding its ezxecution time
(the time it takes to execute its behaviour once) and with in-
formation about its cycletime(the number of times it needs
to be executed in one scheduler cycle). Using this infor-
mation (combined with the information of the data depen-
dency provided by the connectors) we are now investigat-
ing whether it is possible to derive or check a scheduler.
The hardest thing to solve is that we currently identified
three kinds of components: passive components, active com-
ponents and event components. Passive components are
straightforward to handle: they just need to be scheduled
by the scheduler such that their execution and cycling infor-
mation is met. Active components are more difficult. The
reason is that they have their own thread that is running
inside of the component. This thread is typically used to
read-out values directly from hardware, such as the current
speed of a motor. In the current implementation used in
field devices, these values write to internal fields in the com-
ponent, and when the component is scheduled the values
in the internal fields are copied to the OM. Hence, active
components are scheduled and handled exactly as passive
components, even though they have their own thread. We
are currently debating whether this is a good solution, and
what would be alternatives. Event components pose the
same problems as active components. They do not have
their own thread, but act as event sinks that have to cap-
ture and react to events sent by certain pieces of hardware.
Just as with active components, they capture an event, wait
until they are scheduled by the scheduler and then handle
the event.

At the moment of writing we are still investigating possible
solutions to check and generate the scheduler, with proba-
bly the most interesting option to express all the scheduler
constraints using Constraint Logic Programming over Real
Numbers (CLP(R)), and calculate possible schedules. By
the time of the workshop we will have a concrete solution
for this problem, as this is currently under full development.

4.2 Memory consumption

Due to the minimal memory available in field devices, the
memory occupied by a component is a crucial information.
The model should support the computation of the compo-
nent size and checks for component substituability.

To perform the checks, every component is instrumented
with the size it needs for its code and for its data. This
should then be summed and combined with the information
from the blackboard.

4.3 Possibilities for Formal Verification

We are thinking to lift the constraint that components are
completely black-box, and adding and using state charts as
a way to describe the behavior of components. When we

Gary T Leavens
135

Table 1: Structural Checks in the Pecos Component Model

Port The type of the property can only be one in a fixed set (Float, Tfloat, Tscale, ...);

The direction should be in, out or inout;

The location of a port has to be ’static’, ’dynamic’, or 'nv’;

The minimum in the range is smaller than the maximum.

Component | The State can only be active, passive or ’event’;
All the numbers regarding timing and code sizes should be positive or 0..
Connector Connectors can only connect out and in; ports;

The types of the ports should be compatible;

The ranges of ports should be compatible;

do this, we can think of using synchronous languages such
as Esterel [1], Argo/Argonaute [5], Lustre 3|, CRP [2| and
combined approaches [4].

Especially Esterel seems a natural candidate to use in the
context of embedded systems. It is a synchronous and im-
perative concurrent language dedicated to control-dominated
reactive programs which are found in real-time process con-
trol, embedded systems, supervision of complex systems,
communication protocols and HMI. In Esterel, programs
are abstractions that manipulate input signals and gener-
ate output signals. Once programs are expressed in Esterel
they can be formally proved (i.e., non-reachability of state,
timing constraints), compiled to C in a compact form, and
simulated. In the context of Pecos, Esterel seems particu-
larly interesting because the size generated is suitable for
field devices and, more important, timing issues and mem-
ory consumption can be verified:

e it allows the verification that given an input, the out-
put of a program is comprised in a certain amount of
cycles of the input. This means that component sub-
stitution could be verified.

e it allows different code generation schemas. The first
one is boolean generation. By counting the number
of instructions the exact size of a component and its
exact execution time can be counted. The second is
condition-based and can provide maximum execution
time for a component.

Another possibility would be to look at the formalism of
timed state automata, to take timing information into ac-
count.

5. CONCLUSION

In this paper we describe the context of embedded systems,
for which we made a component model to specify and check
Field Devices (a particular kind of embedded system). Due
to the physical constraints imposed on embedded systems,
a component model for embedded devices has very specific
constraints: no runtime allocation, no locking or synchro-
nization, and a simple scheduler. We describe the Pecos
Component Model that we are developing, and that allows
to specify and check Field Devices and their components.
The most interesting aspect of the model is that we want to
check certain non-functional requirements before the soft-
ware for the field device is deployed in the hardware. This
is still under ful development. We showed the current status

136

of the checks, and where we suspect that formal techniques
could be welcomed. In the workshop we want to discuss
with people from the formal community, using our context
as a test case.

6. REFERENCES
[1] G. Berry. The foundations of Esterel. MIT Press, 2000.
Editors: G. Plotkin, C. Stirling and M. Tofte.

[2] G. Berry, S. Ramesh, and R. K. Shyamasundar.
Communicating reactive processes. In ACM, editor,
Conference Record of the Twentieth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages: papers presented at the
symposium, Charleston, South Carolina, January
10-13, 1993, pages 85-98. ACM Press, 1993.

[3] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
lustre. In Proceedings of the IEEFE, September 1991.

[4] F. M. M. Jourdan, F. Lagnier and P. Raymond. A
multiparadigm language for reactive systems. In
Proceedings of the IEEE Internal Conference on
Computer Languages, 1994.

[5] F. Maraninchi. The argos language: Graphical
representation of automata and description of reactive
systems. In Proceedings of the IEEE Internal
Conference on Visual Languages, 1991.

[6] K. Mens, R. Wuyts, and T. D’Hondt. Declaratively
codifying software architectures using virtual software
classifications. In Proceedings of TOOLS-Europe 99,
pages 33-45, June 1999.

[7] C. A. Szyperski. Component Software. Addison-Wesley,
1998.

Gary T Leavens
136

	Table of Contents
	Testing Components by Soundarajan and Tyler
	Spying on Components by Barnett and Schulte
	Towards Reflective Metadata Wrappers for Formally Specified Components by Edwards
	Architectural Reasoning in ArchJava by Aldrich and Chambers
	Using Message Sequence Charts for Component-Based Formal Verification by Finkbeiner and Krueger
	Reasoning about Composition by Charpentier
	Specification and Verification with References by Weide and Heym
	Modular Verification of Performance Correctness by Krone, Ogden, and Sitaraman
	On Contract Monitoring for Verification of Component-Based Systems by Collet
	A Framework for Formal Component-Based Software Architecting by Chaudron, Eskenazi, Fioukov, and Hammer
	Type Handling in a Fully Integrated Programming and Specification Language by Kulczycki
	A Formal Approach to Software Component Specification by Lau and Ornaghi
	A Pi-Calculus based Framework for the Composition and Replacement of Components by Pahl
	Analysis of Component-Based Systems by Rangarajan and Alexander
	A Component Oriented Notation for Behavioral Specification and Validation by Ryl, Clerbout, and Bailly
	Acoel on Coral A COmponent Requirements and Abstraction Language by Sreedhar
	Non-Functional Requirements in a Component Model for Embedded Systems by Wutys and Ducasse
	Introduction
	The Embedded Systems Context
	Pecos Process
	Field Devices

	The Pecos Component Model
	Requirements
	Model Overview

	Checking of Non-Functional Requirements
	Component Scheduling
	Memory consumption
	Possibilities for Formal Verification

	Conclusion
	REFERENCES

